ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembound GIF version

Theorem caucvgsrlembound 7626
Description: Lemma for caucvgsr 7634. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlembound (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Distinct variable groups:   𝑚,𝐹,𝑥,𝑦   𝜑,𝑥   𝑚,𝐺
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgsrlembound
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
2 fveq2 5429 . . . . . . . . 9 (𝑚 = 𝑤 → (𝐹𝑚) = (𝐹𝑤))
32breq2d 3949 . . . . . . . 8 (𝑚 = 𝑤 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝑤)))
43cbvralv 2657 . . . . . . 7 (∀𝑚N 1R <R (𝐹𝑚) ↔ ∀𝑤N 1R <R (𝐹𝑤))
51, 4sylib 121 . . . . . 6 (𝜑 → ∀𝑤N 1R <R (𝐹𝑤))
65r19.21bi 2523 . . . . 5 ((𝜑𝑤N) → 1R <R (𝐹𝑤))
7 df-1r 7564 . . . . . . 7 1R = [⟨(1P +P 1P), 1P⟩] ~R
87eqcomi 2144 . . . . . 6 [⟨(1P +P 1P), 1P⟩] ~R = 1R
98a1i 9 . . . . 5 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R = 1R)
10 caucvgsr.f . . . . . 6 (𝜑𝐹:NR)
11 caucvgsr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
12 caucvgsrlemf.xfr . . . . . 6 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1310, 11, 1, 12caucvgsrlemfv 7623 . . . . 5 ((𝜑𝑤N) → [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R = (𝐹𝑤))
146, 9, 133brtr4d 3968 . . . 4 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R )
15 1pr 7386 . . . . 5 1PP
1610, 11, 1, 12caucvgsrlemf 7624 . . . . . 6 (𝜑𝐺:NP)
1716ffvelrnda 5563 . . . . 5 ((𝜑𝑤N) → (𝐺𝑤) ∈ P)
18 prsrlt 7619 . . . . 5 ((1PP ∧ (𝐺𝑤) ∈ P) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
1915, 17, 18sylancr 411 . . . 4 ((𝜑𝑤N) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
2014, 19mpbird 166 . . 3 ((𝜑𝑤N) → 1P<P (𝐺𝑤))
2120ralrimiva 2508 . 2 (𝜑 → ∀𝑤N 1P<P (𝐺𝑤))
22 fveq2 5429 . . . 4 (𝑤 = 𝑚 → (𝐺𝑤) = (𝐺𝑚))
2322breq2d 3949 . . 3 (𝑤 = 𝑚 → (1P<P (𝐺𝑤) ↔ 1P<P (𝐺𝑚)))
2423cbvralv 2657 . 2 (∀𝑤N 1P<P (𝐺𝑤) ↔ ∀𝑚N 1P<P (𝐺𝑚))
2521, 24sylib 121 1 (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  {cab 2126  wral 2417  cop 3535   class class class wbr 3937  cmpt 3997  wf 5127  cfv 5131  crio 5737  (class class class)co 5782  1oc1o 6314  [cec 6435  Ncnpi 7104   <N clti 7107   ~Q ceq 7111  *Qcrq 7116   <Q cltq 7117  Pcnp 7123  1Pc1p 7124   +P cpp 7125  <P cltp 7127   ~R cer 7128  Rcnr 7129  1Rc1r 7131   +R cplr 7133   <R cltr 7135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-i1p 7299  df-iplp 7300  df-iltp 7302  df-enr 7558  df-nr 7559  df-ltr 7562  df-0r 7563  df-1r 7564
This theorem is referenced by:  caucvgsrlemgt1  7627
  Copyright terms: Public domain W3C validator