ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembound GIF version

Theorem caucvgsrlembound 7878
Description: Lemma for caucvgsr 7886. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlembound (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Distinct variable groups:   𝑚,𝐹,𝑥,𝑦   𝜑,𝑥   𝑚,𝐺
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgsrlembound
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
2 fveq2 5561 . . . . . . . . 9 (𝑚 = 𝑤 → (𝐹𝑚) = (𝐹𝑤))
32breq2d 4046 . . . . . . . 8 (𝑚 = 𝑤 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝑤)))
43cbvralv 2729 . . . . . . 7 (∀𝑚N 1R <R (𝐹𝑚) ↔ ∀𝑤N 1R <R (𝐹𝑤))
51, 4sylib 122 . . . . . 6 (𝜑 → ∀𝑤N 1R <R (𝐹𝑤))
65r19.21bi 2585 . . . . 5 ((𝜑𝑤N) → 1R <R (𝐹𝑤))
7 df-1r 7816 . . . . . . 7 1R = [⟨(1P +P 1P), 1P⟩] ~R
87eqcomi 2200 . . . . . 6 [⟨(1P +P 1P), 1P⟩] ~R = 1R
98a1i 9 . . . . 5 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R = 1R)
10 caucvgsr.f . . . . . 6 (𝜑𝐹:NR)
11 caucvgsr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
12 caucvgsrlemf.xfr . . . . . 6 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1310, 11, 1, 12caucvgsrlemfv 7875 . . . . 5 ((𝜑𝑤N) → [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R = (𝐹𝑤))
146, 9, 133brtr4d 4066 . . . 4 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R )
15 1pr 7638 . . . . 5 1PP
1610, 11, 1, 12caucvgsrlemf 7876 . . . . . 6 (𝜑𝐺:NP)
1716ffvelcdmda 5700 . . . . 5 ((𝜑𝑤N) → (𝐺𝑤) ∈ P)
18 prsrlt 7871 . . . . 5 ((1PP ∧ (𝐺𝑤) ∈ P) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
1915, 17, 18sylancr 414 . . . 4 ((𝜑𝑤N) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
2014, 19mpbird 167 . . 3 ((𝜑𝑤N) → 1P<P (𝐺𝑤))
2120ralrimiva 2570 . 2 (𝜑 → ∀𝑤N 1P<P (𝐺𝑤))
22 fveq2 5561 . . . 4 (𝑤 = 𝑚 → (𝐺𝑤) = (𝐺𝑚))
2322breq2d 4046 . . 3 (𝑤 = 𝑚 → (1P<P (𝐺𝑤) ↔ 1P<P (𝐺𝑚)))
2423cbvralv 2729 . 2 (∀𝑤N 1P<P (𝐺𝑤) ↔ ∀𝑚N 1P<P (𝐺𝑚))
2521, 24sylib 122 1 (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  {cab 2182  wral 2475  cop 3626   class class class wbr 4034  cmpt 4095  wf 5255  cfv 5259  crio 5879  (class class class)co 5925  1oc1o 6476  [cec 6599  Ncnpi 7356   <N clti 7359   ~Q ceq 7363  *Qcrq 7368   <Q cltq 7369  Pcnp 7375  1Pc1p 7376   +P cpp 7377  <P cltp 7379   ~R cer 7380  Rcnr 7381  1Rc1r 7383   +R cplr 7385   <R cltr 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-iltp 7554  df-enr 7810  df-nr 7811  df-ltr 7814  df-0r 7815  df-1r 7816
This theorem is referenced by:  caucvgsrlemgt1  7879
  Copyright terms: Public domain W3C validator