![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlembound | GIF version |
Description: Lemma for caucvgsr 7821. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) |
caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )) |
Ref | Expression |
---|---|
caucvgsrlembound | ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemgt1.gt1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
2 | fveq2 5531 | . . . . . . . . 9 ⊢ (𝑚 = 𝑤 → (𝐹‘𝑚) = (𝐹‘𝑤)) | |
3 | 2 | breq2d 4030 | . . . . . . . 8 ⊢ (𝑚 = 𝑤 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝑤))) |
4 | 3 | cbvralv 2718 | . . . . . . 7 ⊢ (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) ↔ ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
5 | 1, 4 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
6 | 5 | r19.21bi 2578 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1R <R (𝐹‘𝑤)) |
7 | df-1r 7751 | . . . . . . 7 ⊢ 1R = [⟨(1P +P 1P), 1P⟩] ~R | |
8 | 7 | eqcomi 2193 | . . . . . 6 ⊢ [⟨(1P +P 1P), 1P⟩] ~R = 1R |
9 | 8 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [⟨(1P +P 1P), 1P⟩] ~R = 1R) |
10 | caucvgsr.f | . . . . . 6 ⊢ (𝜑 → 𝐹:N⟶R) | |
11 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [⟨(⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R )))) | |
12 | caucvgsrlemf.xfr | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R )) | |
13 | 10, 11, 1, 12 | caucvgsrlemfv 7810 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [⟨((𝐺‘𝑤) +P 1P), 1P⟩] ~R = (𝐹‘𝑤)) |
14 | 6, 9, 13 | 3brtr4d 4050 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺‘𝑤) +P 1P), 1P⟩] ~R ) |
15 | 1pr 7573 | . . . . 5 ⊢ 1P ∈ P | |
16 | 10, 11, 1, 12 | caucvgsrlemf 7811 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶P) |
17 | 16 | ffvelcdmda 5668 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (𝐺‘𝑤) ∈ P) |
18 | prsrlt 7806 | . . . . 5 ⊢ ((1P ∈ P ∧ (𝐺‘𝑤) ∈ P) → (1P<P (𝐺‘𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺‘𝑤) +P 1P), 1P⟩] ~R )) | |
19 | 15, 17, 18 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (1P<P (𝐺‘𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺‘𝑤) +P 1P), 1P⟩] ~R )) |
20 | 14, 19 | mpbird 167 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1P<P (𝐺‘𝑤)) |
21 | 20 | ralrimiva 2563 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ N 1P<P (𝐺‘𝑤)) |
22 | fveq2 5531 | . . . 4 ⊢ (𝑤 = 𝑚 → (𝐺‘𝑤) = (𝐺‘𝑚)) | |
23 | 22 | breq2d 4030 | . . 3 ⊢ (𝑤 = 𝑚 → (1P<P (𝐺‘𝑤) ↔ 1P<P (𝐺‘𝑚))) |
24 | 23 | cbvralv 2718 | . 2 ⊢ (∀𝑤 ∈ N 1P<P (𝐺‘𝑤) ↔ ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 {cab 2175 ∀wral 2468 ⟨cop 3610 class class class wbr 4018 ↦ cmpt 4079 ⟶wf 5228 ‘cfv 5232 ℩crio 5847 (class class class)co 5892 1oc1o 6429 [cec 6552 Ncnpi 7291 <N clti 7294 ~Q ceq 7298 *Qcrq 7303 <Q cltq 7304 Pcnp 7310 1Pc1p 7311 +P cpp 7312 <P cltp 7314 ~R cer 7315 Rcnr 7316 1Rc1r 7318 +R cplr 7320 <R cltr 7322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4304 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-1o 6436 df-2o 6437 df-oadd 6440 df-omul 6441 df-er 6554 df-ec 6556 df-qs 6560 df-ni 7323 df-pli 7324 df-mi 7325 df-lti 7326 df-plpq 7363 df-mpq 7364 df-enq 7366 df-nqqs 7367 df-plqqs 7368 df-mqqs 7369 df-1nqqs 7370 df-rq 7371 df-ltnqqs 7372 df-enq0 7443 df-nq0 7444 df-0nq0 7445 df-plq0 7446 df-mq0 7447 df-inp 7485 df-i1p 7486 df-iplp 7487 df-iltp 7489 df-enr 7745 df-nr 7746 df-ltr 7749 df-0r 7750 df-1r 7751 |
This theorem is referenced by: caucvgsrlemgt1 7814 |
Copyright terms: Public domain | W3C validator |