![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlembound | GIF version |
Description: Lemma for caucvgsr 7864. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) |
Ref | Expression |
---|---|
caucvgsrlembound | ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemgt1.gt1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
2 | fveq2 5555 | . . . . . . . . 9 ⊢ (𝑚 = 𝑤 → (𝐹‘𝑚) = (𝐹‘𝑤)) | |
3 | 2 | breq2d 4042 | . . . . . . . 8 ⊢ (𝑚 = 𝑤 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝑤))) |
4 | 3 | cbvralv 2726 | . . . . . . 7 ⊢ (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) ↔ ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
5 | 1, 4 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
6 | 5 | r19.21bi 2582 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1R <R (𝐹‘𝑤)) |
7 | df-1r 7794 | . . . . . . 7 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
8 | 7 | eqcomi 2197 | . . . . . 6 ⊢ [〈(1P +P 1P), 1P〉] ~R = 1R |
9 | 8 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R = 1R) |
10 | caucvgsr.f | . . . . . 6 ⊢ (𝜑 → 𝐹:N⟶R) | |
11 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
12 | caucvgsrlemf.xfr | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) | |
13 | 10, 11, 1, 12 | caucvgsrlemfv 7853 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R = (𝐹‘𝑤)) |
14 | 6, 9, 13 | 3brtr4d 4062 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R ) |
15 | 1pr 7616 | . . . . 5 ⊢ 1P ∈ P | |
16 | 10, 11, 1, 12 | caucvgsrlemf 7854 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶P) |
17 | 16 | ffvelcdmda 5694 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (𝐺‘𝑤) ∈ P) |
18 | prsrlt 7849 | . . . . 5 ⊢ ((1P ∈ P ∧ (𝐺‘𝑤) ∈ P) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) | |
19 | 15, 17, 18 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) |
20 | 14, 19 | mpbird 167 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1P<P (𝐺‘𝑤)) |
21 | 20 | ralrimiva 2567 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ N 1P<P (𝐺‘𝑤)) |
22 | fveq2 5555 | . . . 4 ⊢ (𝑤 = 𝑚 → (𝐺‘𝑤) = (𝐺‘𝑚)) | |
23 | 22 | breq2d 4042 | . . 3 ⊢ (𝑤 = 𝑚 → (1P<P (𝐺‘𝑤) ↔ 1P<P (𝐺‘𝑚))) |
24 | 23 | cbvralv 2726 | . 2 ⊢ (∀𝑤 ∈ N 1P<P (𝐺‘𝑤) ↔ ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 〈cop 3622 class class class wbr 4030 ↦ cmpt 4091 ⟶wf 5251 ‘cfv 5255 ℩crio 5873 (class class class)co 5919 1oc1o 6464 [cec 6587 Ncnpi 7334 <N clti 7337 ~Q ceq 7341 *Qcrq 7346 <Q cltq 7347 Pcnp 7353 1Pc1p 7354 +P cpp 7355 <P cltp 7357 ~R cer 7358 Rcnr 7359 1Rc1r 7361 +R cplr 7363 <R cltr 7365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-eprel 4321 df-id 4325 df-po 4328 df-iso 4329 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-1o 6471 df-2o 6472 df-oadd 6475 df-omul 6476 df-er 6589 df-ec 6591 df-qs 6595 df-ni 7366 df-pli 7367 df-mi 7368 df-lti 7369 df-plpq 7406 df-mpq 7407 df-enq 7409 df-nqqs 7410 df-plqqs 7411 df-mqqs 7412 df-1nqqs 7413 df-rq 7414 df-ltnqqs 7415 df-enq0 7486 df-nq0 7487 df-0nq0 7488 df-plq0 7489 df-mq0 7490 df-inp 7528 df-i1p 7529 df-iplp 7530 df-iltp 7532 df-enr 7788 df-nr 7789 df-ltr 7792 df-0r 7793 df-1r 7794 |
This theorem is referenced by: caucvgsrlemgt1 7857 |
Copyright terms: Public domain | W3C validator |