Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlembound | GIF version |
Description: Lemma for caucvgsr 7764. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) |
Ref | Expression |
---|---|
caucvgsrlembound | ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsrlemgt1.gt1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
2 | fveq2 5496 | . . . . . . . . 9 ⊢ (𝑚 = 𝑤 → (𝐹‘𝑚) = (𝐹‘𝑤)) | |
3 | 2 | breq2d 4001 | . . . . . . . 8 ⊢ (𝑚 = 𝑤 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝑤))) |
4 | 3 | cbvralv 2696 | . . . . . . 7 ⊢ (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) ↔ ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
5 | 1, 4 | sylib 121 | . . . . . 6 ⊢ (𝜑 → ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
6 | 5 | r19.21bi 2558 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1R <R (𝐹‘𝑤)) |
7 | df-1r 7694 | . . . . . . 7 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
8 | 7 | eqcomi 2174 | . . . . . 6 ⊢ [〈(1P +P 1P), 1P〉] ~R = 1R |
9 | 8 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R = 1R) |
10 | caucvgsr.f | . . . . . 6 ⊢ (𝜑 → 𝐹:N⟶R) | |
11 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
12 | caucvgsrlemf.xfr | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) | |
13 | 10, 11, 1, 12 | caucvgsrlemfv 7753 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R = (𝐹‘𝑤)) |
14 | 6, 9, 13 | 3brtr4d 4021 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R ) |
15 | 1pr 7516 | . . . . 5 ⊢ 1P ∈ P | |
16 | 10, 11, 1, 12 | caucvgsrlemf 7754 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶P) |
17 | 16 | ffvelrnda 5631 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (𝐺‘𝑤) ∈ P) |
18 | prsrlt 7749 | . . . . 5 ⊢ ((1P ∈ P ∧ (𝐺‘𝑤) ∈ P) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) | |
19 | 15, 17, 18 | sylancr 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) |
20 | 14, 19 | mpbird 166 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1P<P (𝐺‘𝑤)) |
21 | 20 | ralrimiva 2543 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ N 1P<P (𝐺‘𝑤)) |
22 | fveq2 5496 | . . . 4 ⊢ (𝑤 = 𝑚 → (𝐺‘𝑤) = (𝐺‘𝑚)) | |
23 | 22 | breq2d 4001 | . . 3 ⊢ (𝑤 = 𝑚 → (1P<P (𝐺‘𝑤) ↔ 1P<P (𝐺‘𝑚))) |
24 | 23 | cbvralv 2696 | . 2 ⊢ (∀𝑤 ∈ N 1P<P (𝐺‘𝑤) ↔ ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
25 | 21, 24 | sylib 121 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {cab 2156 ∀wral 2448 〈cop 3586 class class class wbr 3989 ↦ cmpt 4050 ⟶wf 5194 ‘cfv 5198 ℩crio 5808 (class class class)co 5853 1oc1o 6388 [cec 6511 Ncnpi 7234 <N clti 7237 ~Q ceq 7241 *Qcrq 7246 <Q cltq 7247 Pcnp 7253 1Pc1p 7254 +P cpp 7255 <P cltp 7257 ~R cer 7258 Rcnr 7259 1Rc1r 7261 +R cplr 7263 <R cltr 7265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-2o 6396 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-enq0 7386 df-nq0 7387 df-0nq0 7388 df-plq0 7389 df-mq0 7390 df-inp 7428 df-i1p 7429 df-iplp 7430 df-iltp 7432 df-enr 7688 df-nr 7689 df-ltr 7692 df-0r 7693 df-1r 7694 |
This theorem is referenced by: caucvgsrlemgt1 7757 |
Copyright terms: Public domain | W3C validator |