| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlembound | GIF version | ||
| Description: Lemma for caucvgsr 7869. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
| caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) |
| Ref | Expression |
|---|---|
| caucvgsrlembound | ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlemgt1.gt1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
| 2 | fveq2 5558 | . . . . . . . . 9 ⊢ (𝑚 = 𝑤 → (𝐹‘𝑚) = (𝐹‘𝑤)) | |
| 3 | 2 | breq2d 4045 | . . . . . . . 8 ⊢ (𝑚 = 𝑤 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝑤))) |
| 4 | 3 | cbvralv 2729 | . . . . . . 7 ⊢ (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) ↔ ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
| 5 | 1, 4 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
| 6 | 5 | r19.21bi 2585 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1R <R (𝐹‘𝑤)) |
| 7 | df-1r 7799 | . . . . . . 7 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 8 | 7 | eqcomi 2200 | . . . . . 6 ⊢ [〈(1P +P 1P), 1P〉] ~R = 1R |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R = 1R) |
| 10 | caucvgsr.f | . . . . . 6 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 11 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 12 | caucvgsrlemf.xfr | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) | |
| 13 | 10, 11, 1, 12 | caucvgsrlemfv 7858 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R = (𝐹‘𝑤)) |
| 14 | 6, 9, 13 | 3brtr4d 4065 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R ) |
| 15 | 1pr 7621 | . . . . 5 ⊢ 1P ∈ P | |
| 16 | 10, 11, 1, 12 | caucvgsrlemf 7859 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶P) |
| 17 | 16 | ffvelcdmda 5697 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (𝐺‘𝑤) ∈ P) |
| 18 | prsrlt 7854 | . . . . 5 ⊢ ((1P ∈ P ∧ (𝐺‘𝑤) ∈ P) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) | |
| 19 | 15, 17, 18 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) |
| 20 | 14, 19 | mpbird 167 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1P<P (𝐺‘𝑤)) |
| 21 | 20 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ N 1P<P (𝐺‘𝑤)) |
| 22 | fveq2 5558 | . . . 4 ⊢ (𝑤 = 𝑚 → (𝐺‘𝑤) = (𝐺‘𝑚)) | |
| 23 | 22 | breq2d 4045 | . . 3 ⊢ (𝑤 = 𝑚 → (1P<P (𝐺‘𝑤) ↔ 1P<P (𝐺‘𝑚))) |
| 24 | 23 | cbvralv 2729 | . 2 ⊢ (∀𝑤 ∈ N 1P<P (𝐺‘𝑤) ↔ ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
| 25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 〈cop 3625 class class class wbr 4033 ↦ cmpt 4094 ⟶wf 5254 ‘cfv 5258 ℩crio 5876 (class class class)co 5922 1oc1o 6467 [cec 6590 Ncnpi 7339 <N clti 7342 ~Q ceq 7346 *Qcrq 7351 <Q cltq 7352 Pcnp 7358 1Pc1p 7359 +P cpp 7360 <P cltp 7362 ~R cer 7363 Rcnr 7364 1Rc1r 7366 +R cplr 7368 <R cltr 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-2o 6475 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-enq0 7491 df-nq0 7492 df-0nq0 7493 df-plq0 7494 df-mq0 7495 df-inp 7533 df-i1p 7534 df-iplp 7535 df-iltp 7537 df-enr 7793 df-nr 7794 df-ltr 7797 df-0r 7798 df-1r 7799 |
| This theorem is referenced by: caucvgsrlemgt1 7862 |
| Copyright terms: Public domain | W3C validator |