ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembound GIF version

Theorem caucvgsrlembound 7756
Description: Lemma for caucvgsr 7764. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlemgt1.gt1 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
caucvgsrlemf.xfr 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
Assertion
Ref Expression
caucvgsrlembound (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Distinct variable groups:   𝑚,𝐹,𝑥,𝑦   𝜑,𝑥   𝑚,𝐺
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑘,𝑚,𝑛,𝑙)   𝐹(𝑢,𝑘,𝑛,𝑙)   𝐺(𝑥,𝑦,𝑢,𝑘,𝑛,𝑙)

Proof of Theorem caucvgsrlembound
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caucvgsrlemgt1.gt1 . . . . . . 7 (𝜑 → ∀𝑚N 1R <R (𝐹𝑚))
2 fveq2 5496 . . . . . . . . 9 (𝑚 = 𝑤 → (𝐹𝑚) = (𝐹𝑤))
32breq2d 4001 . . . . . . . 8 (𝑚 = 𝑤 → (1R <R (𝐹𝑚) ↔ 1R <R (𝐹𝑤)))
43cbvralv 2696 . . . . . . 7 (∀𝑚N 1R <R (𝐹𝑚) ↔ ∀𝑤N 1R <R (𝐹𝑤))
51, 4sylib 121 . . . . . 6 (𝜑 → ∀𝑤N 1R <R (𝐹𝑤))
65r19.21bi 2558 . . . . 5 ((𝜑𝑤N) → 1R <R (𝐹𝑤))
7 df-1r 7694 . . . . . . 7 1R = [⟨(1P +P 1P), 1P⟩] ~R
87eqcomi 2174 . . . . . 6 [⟨(1P +P 1P), 1P⟩] ~R = 1R
98a1i 9 . . . . 5 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R = 1R)
10 caucvgsr.f . . . . . 6 (𝜑𝐹:NR)
11 caucvgsr.cau . . . . . 6 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
12 caucvgsrlemf.xfr . . . . . 6 𝐺 = (𝑥N ↦ (𝑦P (𝐹𝑥) = [⟨(𝑦 +P 1P), 1P⟩] ~R ))
1310, 11, 1, 12caucvgsrlemfv 7753 . . . . 5 ((𝜑𝑤N) → [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R = (𝐹𝑤))
146, 9, 133brtr4d 4021 . . . 4 ((𝜑𝑤N) → [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R )
15 1pr 7516 . . . . 5 1PP
1610, 11, 1, 12caucvgsrlemf 7754 . . . . . 6 (𝜑𝐺:NP)
1716ffvelrnda 5631 . . . . 5 ((𝜑𝑤N) → (𝐺𝑤) ∈ P)
18 prsrlt 7749 . . . . 5 ((1PP ∧ (𝐺𝑤) ∈ P) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
1915, 17, 18sylancr 412 . . . 4 ((𝜑𝑤N) → (1P<P (𝐺𝑤) ↔ [⟨(1P +P 1P), 1P⟩] ~R <R [⟨((𝐺𝑤) +P 1P), 1P⟩] ~R ))
2014, 19mpbird 166 . . 3 ((𝜑𝑤N) → 1P<P (𝐺𝑤))
2120ralrimiva 2543 . 2 (𝜑 → ∀𝑤N 1P<P (𝐺𝑤))
22 fveq2 5496 . . . 4 (𝑤 = 𝑚 → (𝐺𝑤) = (𝐺𝑚))
2322breq2d 4001 . . 3 (𝑤 = 𝑚 → (1P<P (𝐺𝑤) ↔ 1P<P (𝐺𝑚)))
2423cbvralv 2696 . 2 (∀𝑤N 1P<P (𝐺𝑤) ↔ ∀𝑚N 1P<P (𝐺𝑚))
2521, 24sylib 121 1 (𝜑 → ∀𝑚N 1P<P (𝐺𝑚))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  {cab 2156  wral 2448  cop 3586   class class class wbr 3989  cmpt 4050  wf 5194  cfv 5198  crio 5808  (class class class)co 5853  1oc1o 6388  [cec 6511  Ncnpi 7234   <N clti 7237   ~Q ceq 7241  *Qcrq 7246   <Q cltq 7247  Pcnp 7253  1Pc1p 7254   +P cpp 7255  <P cltp 7257   ~R cer 7258  Rcnr 7259  1Rc1r 7261   +R cplr 7263   <R cltr 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-i1p 7429  df-iplp 7430  df-iltp 7432  df-enr 7688  df-nr 7689  df-ltr 7692  df-0r 7693  df-1r 7694
This theorem is referenced by:  caucvgsrlemgt1  7757
  Copyright terms: Public domain W3C validator