| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgsrlembound | GIF version | ||
| Description: Lemma for caucvgsr 7985. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| Ref | Expression |
|---|---|
| caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
| caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
| caucvgsrlemgt1.gt1 | ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) |
| caucvgsrlemf.xfr | ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) |
| Ref | Expression |
|---|---|
| caucvgsrlembound | ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgsrlemgt1.gt1 | . . . . . . 7 ⊢ (𝜑 → ∀𝑚 ∈ N 1R <R (𝐹‘𝑚)) | |
| 2 | fveq2 5626 | . . . . . . . . 9 ⊢ (𝑚 = 𝑤 → (𝐹‘𝑚) = (𝐹‘𝑤)) | |
| 3 | 2 | breq2d 4094 | . . . . . . . 8 ⊢ (𝑚 = 𝑤 → (1R <R (𝐹‘𝑚) ↔ 1R <R (𝐹‘𝑤))) |
| 4 | 3 | cbvralv 2765 | . . . . . . 7 ⊢ (∀𝑚 ∈ N 1R <R (𝐹‘𝑚) ↔ ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
| 5 | 1, 4 | sylib 122 | . . . . . 6 ⊢ (𝜑 → ∀𝑤 ∈ N 1R <R (𝐹‘𝑤)) |
| 6 | 5 | r19.21bi 2618 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1R <R (𝐹‘𝑤)) |
| 7 | df-1r 7915 | . . . . . . 7 ⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | |
| 8 | 7 | eqcomi 2233 | . . . . . 6 ⊢ [〈(1P +P 1P), 1P〉] ~R = 1R |
| 9 | 8 | a1i 9 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R = 1R) |
| 10 | caucvgsr.f | . . . . . 6 ⊢ (𝜑 → 𝐹:N⟶R) | |
| 11 | caucvgsr.cau | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
| 12 | caucvgsrlemf.xfr | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ N ↦ (℩𝑦 ∈ P (𝐹‘𝑥) = [〈(𝑦 +P 1P), 1P〉] ~R )) | |
| 13 | 10, 11, 1, 12 | caucvgsrlemfv 7974 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R = (𝐹‘𝑤)) |
| 14 | 6, 9, 13 | 3brtr4d 4114 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R ) |
| 15 | 1pr 7737 | . . . . 5 ⊢ 1P ∈ P | |
| 16 | 10, 11, 1, 12 | caucvgsrlemf 7975 | . . . . . 6 ⊢ (𝜑 → 𝐺:N⟶P) |
| 17 | 16 | ffvelcdmda 5769 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (𝐺‘𝑤) ∈ P) |
| 18 | prsrlt 7970 | . . . . 5 ⊢ ((1P ∈ P ∧ (𝐺‘𝑤) ∈ P) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) | |
| 19 | 15, 17, 18 | sylancr 414 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → (1P<P (𝐺‘𝑤) ↔ [〈(1P +P 1P), 1P〉] ~R <R [〈((𝐺‘𝑤) +P 1P), 1P〉] ~R )) |
| 20 | 14, 19 | mpbird 167 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ N) → 1P<P (𝐺‘𝑤)) |
| 21 | 20 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑤 ∈ N 1P<P (𝐺‘𝑤)) |
| 22 | fveq2 5626 | . . . 4 ⊢ (𝑤 = 𝑚 → (𝐺‘𝑤) = (𝐺‘𝑚)) | |
| 23 | 22 | breq2d 4094 | . . 3 ⊢ (𝑤 = 𝑚 → (1P<P (𝐺‘𝑤) ↔ 1P<P (𝐺‘𝑚))) |
| 24 | 23 | cbvralv 2765 | . 2 ⊢ (∀𝑤 ∈ N 1P<P (𝐺‘𝑤) ↔ ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
| 25 | 21, 24 | sylib 122 | 1 ⊢ (𝜑 → ∀𝑚 ∈ N 1P<P (𝐺‘𝑚)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 〈cop 3669 class class class wbr 4082 ↦ cmpt 4144 ⟶wf 5313 ‘cfv 5317 ℩crio 5952 (class class class)co 6000 1oc1o 6553 [cec 6676 Ncnpi 7455 <N clti 7458 ~Q ceq 7462 *Qcrq 7467 <Q cltq 7468 Pcnp 7474 1Pc1p 7475 +P cpp 7476 <P cltp 7478 ~R cer 7479 Rcnr 7480 1Rc1r 7482 +R cplr 7484 <R cltr 7486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-2o 6561 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-rq 7535 df-ltnqqs 7536 df-enq0 7607 df-nq0 7608 df-0nq0 7609 df-plq0 7610 df-mq0 7611 df-inp 7649 df-i1p 7650 df-iplp 7651 df-iltp 7653 df-enr 7909 df-nr 7910 df-ltr 7913 df-0r 7914 df-1r 7915 |
| This theorem is referenced by: caucvgsrlemgt1 7978 |
| Copyright terms: Public domain | W3C validator |