![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvr1 | GIF version |
Description: A ring element divided by the ring unity is itself. (div1 8724 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.) |
Ref | Expression |
---|---|
dvr1.b | ⊢ 𝐵 = (Base‘𝑅) |
dvr1.d | ⊢ / = (/r‘𝑅) |
dvr1.o | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
dvr1 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvr1.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | 1 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝐵 = (Base‘𝑅)) |
3 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (.r‘𝑅) = (.r‘𝑅)) | |
4 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (Unit‘𝑅) = (Unit‘𝑅)) | |
5 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (invr‘𝑅) = (invr‘𝑅)) | |
6 | dvr1.d | . . . 4 ⊢ / = (/r‘𝑅) | |
7 | 6 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → / = (/r‘𝑅)) |
8 | simpl 109 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) | |
9 | simpr 110 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
10 | eqid 2193 | . . . . 5 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
11 | dvr1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
12 | 10, 11 | 1unit 13606 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Unit‘𝑅)) |
13 | 12 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 1 ∈ (Unit‘𝑅)) |
14 | 2, 3, 4, 5, 7, 8, 9, 13 | dvrvald 13633 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = (𝑋(.r‘𝑅)((invr‘𝑅)‘ 1 ))) |
15 | eqid 2193 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
16 | 15, 11 | 1rinv 13627 | . . . 4 ⊢ (𝑅 ∈ Ring → ((invr‘𝑅)‘ 1 ) = 1 ) |
17 | 16 | adantr 276 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((invr‘𝑅)‘ 1 ) = 1 ) |
18 | 17 | oveq2d 5935 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅)((invr‘𝑅)‘ 1 )) = (𝑋(.r‘𝑅) 1 )) |
19 | eqid 2193 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
20 | 1, 19, 11 | ringridm 13523 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋(.r‘𝑅) 1 ) = 𝑋) |
21 | 14, 18, 20 | 3eqtrd 2230 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 .rcmulr 12699 1rcur 13458 Ringcrg 13495 Unitcui 13586 invrcinvr 13619 /rcdvr 13630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-oppr 13567 df-dvdsr 13588 df-unit 13589 df-invr 13620 df-dvr 13631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |