ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1rinv GIF version

Theorem 1rinv 14086
Description: The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
1rinv.1 𝐼 = (invr𝑅)
1rinv.2 1 = (1r𝑅)
Assertion
Ref Expression
1rinv (𝑅 ∈ Ring → (𝐼1 ) = 1 )

Proof of Theorem 1rinv
StepHypRef Expression
1 eqid 2229 . . . . 5 (Unit‘𝑅) = (Unit‘𝑅)
2 1rinv.2 . . . . 5 1 = (1r𝑅)
31, 21unit 14065 . . . 4 (𝑅 ∈ Ring → 1 ∈ (Unit‘𝑅))
4 1rinv.1 . . . . 5 𝐼 = (invr𝑅)
5 eqid 2229 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
61, 4, 5ringinvcl 14083 . . . 4 ((𝑅 ∈ Ring ∧ 1 ∈ (Unit‘𝑅)) → (𝐼1 ) ∈ (Base‘𝑅))
73, 6mpdan 421 . . 3 (𝑅 ∈ Ring → (𝐼1 ) ∈ (Base‘𝑅))
8 eqid 2229 . . . 4 (.r𝑅) = (.r𝑅)
95, 8, 2ringlidm 13981 . . 3 ((𝑅 ∈ Ring ∧ (𝐼1 ) ∈ (Base‘𝑅)) → ( 1 (.r𝑅)(𝐼1 )) = (𝐼1 ))
107, 9mpdan 421 . 2 (𝑅 ∈ Ring → ( 1 (.r𝑅)(𝐼1 )) = (𝐼1 ))
111, 4, 8, 2unitrinv 14085 . . 3 ((𝑅 ∈ Ring ∧ 1 ∈ (Unit‘𝑅)) → ( 1 (.r𝑅)(𝐼1 )) = 1 )
123, 11mpdan 421 . 2 (𝑅 ∈ Ring → ( 1 (.r𝑅)(𝐼1 )) = 1 )
1310, 12eqtr3d 2264 1 (𝑅 ∈ Ring → (𝐼1 ) = 1 )
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  .rcmulr 13106  1rcur 13917  Ringcrg 13954  Unitcui 14045  invrcinvr 14078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079
This theorem is referenced by:  dvr1  14096
  Copyright terms: Public domain W3C validator