ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lsp0 GIF version

Theorem lsp0 13979
Description: Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
lspsn0.z 0 = (0g𝑊)
lspsn0.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lsp0 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })

Proof of Theorem lsp0
StepHypRef Expression
1 lspsn0.z . . . 4 0 = (0g𝑊)
2 eqid 2196 . . . 4 (LSubSp‘𝑊) = (LSubSp‘𝑊)
31, 2lsssn0 13926 . . 3 (𝑊 ∈ LMod → { 0 } ∈ (LSubSp‘𝑊))
4 0ss 3489 . . . 4 ∅ ⊆ { 0 }
5 lspsn0.n . . . . 5 𝑁 = (LSpan‘𝑊)
62, 5lspssp 13959 . . . 4 ((𝑊 ∈ LMod ∧ { 0 } ∈ (LSubSp‘𝑊) ∧ ∅ ⊆ { 0 }) → (𝑁‘∅) ⊆ { 0 })
74, 6mp3an3 1337 . . 3 ((𝑊 ∈ LMod ∧ { 0 } ∈ (LSubSp‘𝑊)) → (𝑁‘∅) ⊆ { 0 })
83, 7mpdan 421 . 2 (𝑊 ∈ LMod → (𝑁‘∅) ⊆ { 0 })
9 0ss 3489 . . . 4 ∅ ⊆ (Base‘𝑊)
10 eqid 2196 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
1110, 2, 5lspcl 13947 . . . 4 ((𝑊 ∈ LMod ∧ ∅ ⊆ (Base‘𝑊)) → (𝑁‘∅) ∈ (LSubSp‘𝑊))
129, 11mpan2 425 . . 3 (𝑊 ∈ LMod → (𝑁‘∅) ∈ (LSubSp‘𝑊))
131, 2lss0ss 13927 . . 3 ((𝑊 ∈ LMod ∧ (𝑁‘∅) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘∅))
1412, 13mpdan 421 . 2 (𝑊 ∈ LMod → { 0 } ⊆ (𝑁‘∅))
158, 14eqssd 3200 1 (𝑊 ∈ LMod → (𝑁‘∅) = { 0 })
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  wss 3157  c0 3450  {csn 3622  cfv 5258  Basecbs 12678  0gc0g 12927  LModclmod 13843  LSubSpclss 13908  LSpanclspn 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-sca 12771  df-vsca 12772  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-mgp 13477  df-ur 13516  df-ring 13554  df-lmod 13845  df-lssm 13909  df-lsp 13943
This theorem is referenced by:  lspuni0  13980  lss0v  13986
  Copyright terms: Public domain W3C validator