Step | Hyp | Ref
| Expression |
1 | | simp1 997 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β LMod) |
2 | | eqid 2177 |
. . . 4
β’
(Baseβπ) =
(Baseβπ) |
3 | | lssvnegcl.s |
. . . 4
β’ π = (LSubSpβπ) |
4 | 2, 3 | lsselg 13454 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β (Baseβπ)) |
5 | | lssvnegcl.n |
. . . 4
β’ π = (invgβπ) |
6 | | eqid 2177 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
7 | | eqid 2177 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
8 | | eqid 2177 |
. . . 4
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
9 | | eqid 2177 |
. . . 4
β’
(invgβ(Scalarβπ)) =
(invgβ(Scalarβπ)) |
10 | 2, 5, 6, 7, 8, 9 | lmodvneg1 13426 |
. . 3
β’ ((π β LMod β§ π β (Baseβπ)) β
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) = (πβπ)) |
11 | 1, 4, 10 | syl2anc 411 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) = (πβπ)) |
12 | | simp2 998 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
13 | 6 | lmodring 13391 |
. . . . . 6
β’ (π β LMod β
(Scalarβπ) β
Ring) |
14 | 13 | 3ad2ant1 1018 |
. . . . 5
β’ ((π β LMod β§ π β π β§ π β π) β (Scalarβπ) β Ring) |
15 | 14 | ringgrpd 13194 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β (Scalarβπ) β Grp) |
16 | | eqid 2177 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
17 | 16, 8 | ringidcl 13209 |
. . . . 5
β’
((Scalarβπ)
β Ring β (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
18 | 14, 17 | syl 14 |
. . . 4
β’ ((π β LMod β§ π β π β§ π β π) β
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
19 | 16, 9 | grpinvcl 12927 |
. . . 4
β’
(((Scalarβπ)
β Grp β§ (1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
20 | 15, 18, 19 | syl2anc 411 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β
((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
21 | | simp3 999 |
. . 3
β’ ((π β LMod β§ π β π β§ π β π) β π β π) |
22 | 6, 7, 16, 3 | lssvscl 13468 |
. . 3
β’ (((π β LMod β§ π β π) β§
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ))) β
(Baseβ(Scalarβπ))
β§ π β π)) β
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) β π) |
23 | 1, 12, 20, 21, 22 | syl22anc 1239 |
. 2
β’ ((π β LMod β§ π β π β§ π β π) β
(((invgβ(Scalarβπ))β(1rβ(Scalarβπ)))(
Β·π βπ)π) β π) |
24 | 11, 23 | eqeltrrd 2255 |
1
β’ ((π β LMod β§ π β π β§ π β π) β (πβπ) β π) |