![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lssvnegcl | GIF version |
Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.) |
Ref | Expression |
---|---|
lssvnegcl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lssvnegcl.n | ⊢ 𝑁 = (invg‘𝑊) |
Ref | Expression |
---|---|
lssvnegcl | ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑊 ∈ LMod) | |
2 | eqid 2189 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lssvnegcl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | 2, 3 | lsselg 13694 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑊)) |
5 | lssvnegcl.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
6 | eqid 2189 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
7 | eqid 2189 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
8 | eqid 2189 | . . . 4 ⊢ (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)) | |
9 | eqid 2189 | . . . 4 ⊢ (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊)) | |
10 | 2, 5, 6, 7, 8, 9 | lmodvneg1 13663 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) = (𝑁‘𝑋)) |
11 | 1, 4, 10 | syl2anc 411 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) = (𝑁‘𝑋)) |
12 | simp2 1000 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑈 ∈ 𝑆) | |
13 | 6 | lmodring 13628 | . . . . . 6 ⊢ (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring) |
14 | 13 | 3ad2ant1 1020 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (Scalar‘𝑊) ∈ Ring) |
15 | 14 | ringgrpd 13376 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (Scalar‘𝑊) ∈ Grp) |
16 | eqid 2189 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
17 | 16, 8 | ringidcl 13391 | . . . . 5 ⊢ ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
18 | 14, 17 | syl 14 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) |
19 | 16, 9 | grpinvcl 13007 | . . . 4 ⊢ (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊))) |
20 | 15, 18, 19 | syl2anc 411 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊))) |
21 | simp3 1001 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → 𝑋 ∈ 𝑈) | |
22 | 6, 7, 16, 3 | lssvscl 13708 | . . 3 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋 ∈ 𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) ∈ 𝑈) |
23 | 1, 12, 20, 21, 22 | syl22anc 1250 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠 ‘𝑊)𝑋) ∈ 𝑈) |
24 | 11, 23 | eqeltrrd 2267 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ‘cfv 5235 (class class class)co 5897 Basecbs 12515 Scalarcsca 12595 ·𝑠 cvsca 12596 Grpcgrp 12960 invgcminusg 12961 1rcur 13330 Ringcrg 13367 LModclmod 13620 LSubSpclss 13685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-pre-ltirr 7954 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-ltxr 8028 df-inn 8951 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-ndx 12518 df-slot 12519 df-base 12521 df-sets 12522 df-plusg 12605 df-mulr 12606 df-sca 12608 df-vsca 12609 df-0g 12766 df-mgm 12835 df-sgrp 12880 df-mnd 12893 df-grp 12963 df-minusg 12964 df-sbg 12965 df-mgp 13292 df-ur 13331 df-ring 13369 df-lmod 13622 df-lssm 13686 |
This theorem is referenced by: lsssubg 13710 lidlnegcl 13818 |
Copyright terms: Public domain | W3C validator |