ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lssvnegcl GIF version

Theorem lssvnegcl 14334
Description: Closure of negative vectors in a subspace. (Contributed by Stefan O'Rear, 11-Dec-2014.)
Hypotheses
Ref Expression
lssvnegcl.s 𝑆 = (LSubSp‘𝑊)
lssvnegcl.n 𝑁 = (invg𝑊)
Assertion
Ref Expression
lssvnegcl ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)

Proof of Theorem lssvnegcl
StepHypRef Expression
1 simp1 1021 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑊 ∈ LMod)
2 eqid 2229 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 lssvnegcl.s . . . 4 𝑆 = (LSubSp‘𝑊)
42, 3lsselg 14319 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑋 ∈ (Base‘𝑊))
5 lssvnegcl.n . . . 4 𝑁 = (invg𝑊)
6 eqid 2229 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2229 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
8 eqid 2229 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
9 eqid 2229 . . . 4 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
102, 5, 6, 7, 8, 9lmodvneg1 14288 . . 3 ((𝑊 ∈ LMod ∧ 𝑋 ∈ (Base‘𝑊)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑁𝑋))
111, 4, 10syl2anc 411 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) = (𝑁𝑋))
12 simp2 1022 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑈𝑆)
136lmodring 14253 . . . . . 6 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
14133ad2ant1 1042 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (Scalar‘𝑊) ∈ Ring)
1514ringgrpd 13963 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (Scalar‘𝑊) ∈ Grp)
16 eqid 2229 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
1716, 8ringidcl 13978 . . . . 5 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1814, 17syl 14 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1916, 9grpinvcl 13576 . . . 4 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2015, 18, 19syl2anc 411 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
21 simp3 1023 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → 𝑋𝑈)
226, 7, 16, 3lssvscl 14333 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑋𝑈)) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) ∈ 𝑈)
231, 12, 20, 21, 22syl22anc 1272 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝑊)𝑋) ∈ 𝑈)
2411, 23eqeltrrd 2307 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑋𝑈) → (𝑁𝑋) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  Scalarcsca 13108   ·𝑠 cvsca 13109  Grpcgrp 13528  invgcminusg 13529  1rcur 13917  Ringcrg 13954  LModclmod 14245  LSubSpclss 14310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-mgp 13879  df-ur 13918  df-ring 13956  df-lmod 14247  df-lssm 14311
This theorem is referenced by:  lsssubg  14335  lidlnegcl  14443
  Copyright terms: Public domain W3C validator