| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec5nprm | GIF version | ||
| Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| dec5nprm | ⊢ ¬ ;𝐴5 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9280 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 9140 | . . 3 ⊢ (2 · 𝐴) ∈ ℕ |
| 4 | peano2nn 9130 | . . 3 ⊢ ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((2 · 𝐴) + 1) ∈ ℕ |
| 6 | 5nn 9283 | . 2 ⊢ 5 ∈ ℕ | |
| 7 | 1nn0 9393 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 1lt2 9288 | . . 3 ⊢ 1 < 2 | |
| 9 | 1, 2, 7, 7, 8 | numlti 9622 | . 2 ⊢ 1 < ((2 · 𝐴) + 1) |
| 10 | 1lt5 9297 | . 2 ⊢ 1 < 5 | |
| 11 | 1 | nncni 9128 | . . . . . 6 ⊢ 2 ∈ ℂ |
| 12 | 2 | nncni 9128 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 13 | 5cn 9198 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 14 | 11, 12, 13 | mul32i 8301 | . . . . 5 ⊢ ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴) |
| 15 | 5t2e10 9685 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 16 | 13, 11, 15 | mulcomli 8161 | . . . . . 6 ⊢ (2 · 5) = ;10 |
| 17 | 16 | oveq1i 6017 | . . . . 5 ⊢ ((2 · 5) · 𝐴) = (;10 · 𝐴) |
| 18 | 14, 17 | eqtri 2250 | . . . 4 ⊢ ((2 · 𝐴) · 5) = (;10 · 𝐴) |
| 19 | 13 | mullidi 8157 | . . . 4 ⊢ (1 · 5) = 5 |
| 20 | 18, 19 | oveq12i 6019 | . . 3 ⊢ (((2 · 𝐴) · 5) + (1 · 5)) = ((;10 · 𝐴) + 5) |
| 21 | 3 | nncni 9128 | . . . 4 ⊢ (2 · 𝐴) ∈ ℂ |
| 22 | ax-1cn 8100 | . . . 4 ⊢ 1 ∈ ℂ | |
| 23 | 21, 22, 13 | adddiri 8165 | . . 3 ⊢ (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5)) |
| 24 | dfdec10 9589 | . . 3 ⊢ ;𝐴5 = ((;10 · 𝐴) + 5) | |
| 25 | 20, 23, 24 | 3eqtr4i 2260 | . 2 ⊢ (((2 · 𝐴) + 1) · 5) = ;𝐴5 |
| 26 | 5, 6, 9, 10, 25 | nprmi 12654 | 1 ⊢ ¬ ;𝐴5 ∈ ℙ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2200 (class class class)co 6007 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 ℕcn 9118 2c2 9169 5c5 9172 ;cdc 9586 ℙcprime 12637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 ax-caucvg 8127 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-2o 6569 df-er 6688 df-en 6896 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-q 9823 df-rp 9858 df-seqfrec 10678 df-exp 10769 df-cj 11361 df-re 11362 df-im 11363 df-rsqrt 11517 df-abs 11518 df-dvds 12307 df-prm 12638 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |