| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dec5nprm | GIF version | ||
| Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| dec5nprm | ⊢ ¬ ;𝐴5 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 9240 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 9100 | . . 3 ⊢ (2 · 𝐴) ∈ ℕ |
| 4 | peano2nn 9090 | . . 3 ⊢ ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((2 · 𝐴) + 1) ∈ ℕ |
| 6 | 5nn 9243 | . 2 ⊢ 5 ∈ ℕ | |
| 7 | 1nn0 9353 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 1lt2 9248 | . . 3 ⊢ 1 < 2 | |
| 9 | 1, 2, 7, 7, 8 | numlti 9582 | . 2 ⊢ 1 < ((2 · 𝐴) + 1) |
| 10 | 1lt5 9257 | . 2 ⊢ 1 < 5 | |
| 11 | 1 | nncni 9088 | . . . . . 6 ⊢ 2 ∈ ℂ |
| 12 | 2 | nncni 9088 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 13 | 5cn 9158 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 14 | 11, 12, 13 | mul32i 8261 | . . . . 5 ⊢ ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴) |
| 15 | 5t2e10 9645 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 16 | 13, 11, 15 | mulcomli 8121 | . . . . . 6 ⊢ (2 · 5) = ;10 |
| 17 | 16 | oveq1i 5984 | . . . . 5 ⊢ ((2 · 5) · 𝐴) = (;10 · 𝐴) |
| 18 | 14, 17 | eqtri 2230 | . . . 4 ⊢ ((2 · 𝐴) · 5) = (;10 · 𝐴) |
| 19 | 13 | mullidi 8117 | . . . 4 ⊢ (1 · 5) = 5 |
| 20 | 18, 19 | oveq12i 5986 | . . 3 ⊢ (((2 · 𝐴) · 5) + (1 · 5)) = ((;10 · 𝐴) + 5) |
| 21 | 3 | nncni 9088 | . . . 4 ⊢ (2 · 𝐴) ∈ ℂ |
| 22 | ax-1cn 8060 | . . . 4 ⊢ 1 ∈ ℂ | |
| 23 | 21, 22, 13 | adddiri 8125 | . . 3 ⊢ (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5)) |
| 24 | dfdec10 9549 | . . 3 ⊢ ;𝐴5 = ((;10 · 𝐴) + 5) | |
| 25 | 20, 23, 24 | 3eqtr4i 2240 | . 2 ⊢ (((2 · 𝐴) + 1) · 5) = ;𝐴5 |
| 26 | 5, 6, 9, 10, 25 | nprmi 12612 | 1 ⊢ ¬ ;𝐴5 ∈ ℙ |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2180 (class class class)co 5974 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 ℕcn 9078 2c2 9129 5c5 9132 ;cdc 9546 ℙcprime 12595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 ax-caucvg 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-1o 6532 df-2o 6533 df-er 6650 df-en 6858 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-z 9415 df-dec 9547 df-uz 9691 df-q 9783 df-rp 9818 df-seqfrec 10637 df-exp 10728 df-cj 11319 df-re 11320 df-im 11321 df-rsqrt 11475 df-abs 11476 df-dvds 12265 df-prm 12596 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |