| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsrpos | GIF version | ||
| Description: Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.) |
| Ref | Expression |
|---|---|
| prsrpos | ⊢ (𝐴 ∈ P → 0R <R [〈(𝐴 +P 1P), 1P〉] ~R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pr 7680 | . . . 4 ⊢ 1P ∈ P | |
| 2 | ltaddpr 7723 | . . . 4 ⊢ ((1P ∈ P ∧ 𝐴 ∈ P) → 1P<P (1P +P 𝐴)) | |
| 3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ P → 1P<P (1P +P 𝐴)) |
| 4 | addcomprg 7704 | . . . 4 ⊢ ((1P ∈ P ∧ 𝐴 ∈ P) → (1P +P 𝐴) = (𝐴 +P 1P)) | |
| 5 | 1, 4 | mpan 424 | . . 3 ⊢ (𝐴 ∈ P → (1P +P 𝐴) = (𝐴 +P 1P)) |
| 6 | 3, 5 | breqtrd 4074 | . 2 ⊢ (𝐴 ∈ P → 1P<P (𝐴 +P 1P)) |
| 7 | gt0srpr 7874 | . 2 ⊢ (0R <R [〈(𝐴 +P 1P), 1P〉] ~R ↔ 1P<P (𝐴 +P 1P)) | |
| 8 | 6, 7 | sylibr 134 | 1 ⊢ (𝐴 ∈ P → 0R <R [〈(𝐴 +P 1P), 1P〉] ~R ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 〈cop 3638 class class class wbr 4048 (class class class)co 5954 [cec 6628 Pcnp 7417 1Pc1p 7418 +P cpp 7419 <P cltp 7421 ~R cer 7422 0Rc0r 7424 <R cltr 7429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-eprel 4341 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-1o 6512 df-2o 6513 df-oadd 6516 df-omul 6517 df-er 6630 df-ec 6632 df-qs 6636 df-ni 7430 df-pli 7431 df-mi 7432 df-lti 7433 df-plpq 7470 df-mpq 7471 df-enq 7473 df-nqqs 7474 df-plqqs 7475 df-mqqs 7476 df-1nqqs 7477 df-rq 7478 df-ltnqqs 7479 df-enq0 7550 df-nq0 7551 df-0nq0 7552 df-plq0 7553 df-mq0 7554 df-inp 7592 df-i1p 7593 df-iplp 7594 df-iltp 7596 df-enr 7852 df-nr 7853 df-ltr 7856 df-0r 7857 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |