ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn0 GIF version

Theorem bcn0 10501
Description: 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn0 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)

Proof of Theorem bcn0
StepHypRef Expression
1 0elfz 9898 . . 3 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
2 bcval2 10496 . . 3 (0 ∈ (0...𝑁) → (𝑁C0) = ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))))
31, 2syl 14 . 2 (𝑁 ∈ ℕ0 → (𝑁C0) = ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))))
4 nn0cn 8987 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
54subid1d 8062 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 0) = 𝑁)
65fveq2d 5425 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘(𝑁 − 0)) = (!‘𝑁))
7 fac0 10474 . . . . . 6 (!‘0) = 1
8 oveq12 5783 . . . . . 6 (((!‘(𝑁 − 0)) = (!‘𝑁) ∧ (!‘0) = 1) → ((!‘(𝑁 − 0)) · (!‘0)) = ((!‘𝑁) · 1))
96, 7, 8sylancl 409 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘(𝑁 − 0)) · (!‘0)) = ((!‘𝑁) · 1))
10 faccl 10481 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
1110nncnd 8734 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
1211mulid1d 7783 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 1) = (!‘𝑁))
139, 12eqtrd 2172 . . . 4 (𝑁 ∈ ℕ0 → ((!‘(𝑁 − 0)) · (!‘0)) = (!‘𝑁))
1413oveq2d 5790 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))) = ((!‘𝑁) / (!‘𝑁)))
1510nnap0d 8766 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) # 0)
1611, 15dividapd 8546 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) / (!‘𝑁)) = 1)
1714, 16eqtrd 2172 . 2 (𝑁 ∈ ℕ0 → ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))) = 1)
183, 17eqtrd 2172 1 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  0cc0 7620  1c1 7621   · cmul 7625  cmin 7933   / cdiv 8432  0cn0 8977  ...cfz 9790  !cfa 10471  Ccbc 10493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-fz 9791  df-seqfrec 10219  df-fac 10472  df-bc 10494
This theorem is referenced by:  bcnn  10503  bcpasc  10512  bccl  10513  binom  11253  bcxmas  11258
  Copyright terms: Public domain W3C validator