ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn0 GIF version

Theorem bcn0 10622
Description: 𝑁 choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
Assertion
Ref Expression
bcn0 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)

Proof of Theorem bcn0
StepHypRef Expression
1 0elfz 10013 . . 3 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
2 bcval2 10617 . . 3 (0 ∈ (0...𝑁) → (𝑁C0) = ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))))
31, 2syl 14 . 2 (𝑁 ∈ ℕ0 → (𝑁C0) = ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))))
4 nn0cn 9094 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
54subid1d 8169 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 0) = 𝑁)
65fveq2d 5471 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘(𝑁 − 0)) = (!‘𝑁))
7 fac0 10595 . . . . . 6 (!‘0) = 1
8 oveq12 5830 . . . . . 6 (((!‘(𝑁 − 0)) = (!‘𝑁) ∧ (!‘0) = 1) → ((!‘(𝑁 − 0)) · (!‘0)) = ((!‘𝑁) · 1))
96, 7, 8sylancl 410 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘(𝑁 − 0)) · (!‘0)) = ((!‘𝑁) · 1))
10 faccl 10602 . . . . . . 7 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
1110nncnd 8841 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
1211mulid1d 7889 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 1) = (!‘𝑁))
139, 12eqtrd 2190 . . . 4 (𝑁 ∈ ℕ0 → ((!‘(𝑁 − 0)) · (!‘0)) = (!‘𝑁))
1413oveq2d 5837 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))) = ((!‘𝑁) / (!‘𝑁)))
1510nnap0d 8873 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) # 0)
1611, 15dividapd 8653 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) / (!‘𝑁)) = 1)
1714, 16eqtrd 2190 . 2 (𝑁 ∈ ℕ0 → ((!‘𝑁) / ((!‘(𝑁 − 0)) · (!‘0))) = 1)
183, 17eqtrd 2190 1 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1335  wcel 2128  cfv 5169  (class class class)co 5821  0cc0 7726  1c1 7727   · cmul 7731  cmin 8040   / cdiv 8539  0cn0 9084  ...cfz 9905  !cfa 10592  Ccbc 10614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-fz 9906  df-seqfrec 10338  df-fac 10593  df-bc 10615
This theorem is referenced by:  bcnn  10624  bcpasc  10633  bccl  10634  binom  11374  bcxmas  11379
  Copyright terms: Public domain W3C validator