| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitssd | GIF version | ||
| Description: The set of units is contained in the base set. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| unitcld.1 | ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| unitcld.2 | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
| unitcld.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
| Ref | Expression |
|---|---|
| unitssd | ⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitcld.1 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) | |
| 2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝐵 = (Base‘𝑅)) |
| 3 | unitcld.2 | . . . . 5 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 5 | unitcld.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
| 6 | 5 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 7 | simpr 110 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝑈) | |
| 8 | 2, 4, 6, 7 | unitcld 13674 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑈) → 𝑥 ∈ 𝐵) |
| 9 | 8 | ex 115 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑈 → 𝑥 ∈ 𝐵)) |
| 10 | 9 | ssrdv 3190 | 1 ⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ‘cfv 5259 Basecbs 12688 SRingcsrg 13529 Unitcui 13653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-addcom 7981 ax-addass 7983 ax-i2m1 7986 ax-0lt1 7987 ax-0id 7989 ax-rnegex 7990 ax-pre-ltirr 7993 ax-pre-ltadd 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-ltxr 8068 df-inn 8993 df-2 9051 df-3 9052 df-ndx 12691 df-slot 12692 df-base 12694 df-sets 12695 df-plusg 12778 df-mulr 12779 df-0g 12939 df-mgm 13009 df-sgrp 13055 df-mnd 13068 df-mgp 13487 df-srg 13530 df-dvdsr 13655 df-unit 13656 |
| This theorem is referenced by: unitgrpbasd 13681 unitgrp 13682 unitabl 13683 unitgrpid 13684 unitsubm 13685 unitlinv 13692 unitrinv 13693 dvrfvald 13699 rdivmuldivd 13710 invrpropdg 13715 rhmunitinv 13744 subrgugrp 13806 |
| Copyright terms: Public domain | W3C validator |