Step | Hyp | Ref
| Expression |
1 | | lgseisen.2 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
2 | | lgseisen.1 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
3 | | lgseisen.3 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
4 | 3 | necomd 2450 |
. . . . 5
⊢ (𝜑 → 𝑄 ≠ 𝑃) |
5 | | lgsquad.5 |
. . . . 5
⊢ 𝑁 = ((𝑄 − 1) / 2) |
6 | | lgsquad.4 |
. . . . 5
⊢ 𝑀 = ((𝑃 − 1) / 2) |
7 | | eleq1w 2254 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (1...𝑀) ↔ 𝑧 ∈ (1...𝑀))) |
8 | | eleq1w 2254 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (1...𝑁) ↔ 𝑤 ∈ (1...𝑁))) |
9 | 7, 8 | bi2anan9 606 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑧 ∈ (1...𝑀) ∧ 𝑤 ∈ (1...𝑁)))) |
10 | 9 | biancomd 271 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)))) |
11 | | oveq1 5925 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄)) |
12 | | oveq1 5925 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃)) |
13 | 11, 12 | breqan12d 4045 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ↔ (𝑧 · 𝑄) < (𝑤 · 𝑃))) |
14 | 10, 13 | anbi12d 473 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃)))) |
15 | 14 | ancoms 268 |
. . . . . 6
⊢ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃)))) |
16 | 15 | cbvopabv 4101 |
. . . . 5
⊢
{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {〈𝑤, 𝑧〉 ∣ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))} |
17 | 1, 2, 4, 5, 6, 16 | lgsquadlem2 15194 |
. . . 4
⊢ (𝜑 → (𝑃 /L 𝑄) = (-1↑(♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))) |
18 | | relopabv 4786 |
. . . . . . . 8
⊢ Rel
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} |
19 | | eqid 2193 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} |
20 | | 1zzd 9344 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℤ) |
21 | 2, 6 | gausslemma2dlem0b 15166 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℕ) |
22 | 21 | nnzd 9438 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
23 | 20, 22 | fzfigd 10502 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
24 | 1, 5 | gausslemma2dlem0b 15166 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
25 | 24 | nnzd 9438 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℤ) |
26 | 20, 25 | fzfigd 10502 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
27 | | elfznn 10120 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ) |
28 | 27 | ad2antrl 490 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ) |
29 | 1 | eldifad 3164 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑄 ∈ ℙ) |
30 | 29 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℙ) |
31 | | prmnn 12248 |
. . . . . . . . . . . . . 14
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℕ) |
32 | 30, 31 | syl 14 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ) |
33 | 28, 32 | nnmulcld 9031 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ) |
34 | 33 | nnzd 9438 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℤ) |
35 | | elfznn 10120 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ) |
36 | 35 | ad2antll 491 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ) |
37 | 2 | gausslemma2dlem0a 15165 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑃 ∈ ℕ) |
38 | 37 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ) |
39 | 36, 38 | nnmulcld 9031 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ) |
40 | 39 | nnzd 9438 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℤ) |
41 | | zdclt 9394 |
. . . . . . . . . . 11
⊢ (((𝑥 · 𝑄) ∈ ℤ ∧ (𝑦 · 𝑃) ∈ ℤ) →
DECID (𝑥
· 𝑄) < (𝑦 · 𝑃)) |
42 | 34, 40, 41 | syl2anc 411 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → DECID (𝑥 · 𝑄) < (𝑦 · 𝑃)) |
43 | 42 | ralrimivva 2576 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ (1...𝑀)∀𝑦 ∈ (1...𝑁)DECID (𝑥 · 𝑄) < (𝑦 · 𝑃)) |
44 | 19, 23, 26, 43 | opabfi 6992 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) |
45 | | cnven 6862 |
. . . . . . . 8
⊢ ((Rel
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∧ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) |
46 | 18, 44, 45 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) |
47 | | cnvopab 5067 |
. . . . . . 7
⊢ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} |
48 | 46, 47 | breqtrdi 4070 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) |
49 | 1, 2, 4, 5, 6, 16 | lgsquadlemsfi 15191 |
. . . . . . 7
⊢ (𝜑 → {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) |
50 | | hashen 10855 |
. . . . . . 7
⊢
(({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin ∧ {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) →
((♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) |
51 | 44, 49, 50 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 →
((♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) |
52 | 48, 51 | mpbird 167 |
. . . . 5
⊢ (𝜑 →
(♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) |
53 | 52 | oveq2d 5934 |
. . . 4
⊢ (𝜑 →
(-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) = (-1↑(♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))) |
54 | 17, 53 | eqtr4d 2229 |
. . 3
⊢ (𝜑 → (𝑃 /L 𝑄) = (-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))) |
55 | | lgsquad.6 |
. . . 4
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} |
56 | 2, 1, 3, 6, 5, 55 | lgsquadlem2 15194 |
. . 3
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) |
57 | 54, 56 | oveq12d 5936 |
. 2
⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = ((-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(♯‘𝑆)))) |
58 | | neg1cn 9087 |
. . . 4
⊢ -1 ∈
ℂ |
59 | 58 | a1i 9 |
. . 3
⊢ (𝜑 → -1 ∈
ℂ) |
60 | 2, 1, 3, 6, 5, 55 | lgsquadlemsfi 15191 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Fin) |
61 | | hashcl 10852 |
. . . 4
⊢ (𝑆 ∈ Fin →
(♯‘𝑆) ∈
ℕ0) |
62 | 60, 61 | syl 14 |
. . 3
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ0) |
63 | | hashcl 10852 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin →
(♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈
ℕ0) |
64 | 44, 63 | syl 14 |
. . 3
⊢ (𝜑 →
(♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈
ℕ0) |
65 | 59, 62, 64 | expaddd 10746 |
. 2
⊢ (𝜑 →
(-1↑((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) = ((-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(♯‘𝑆)))) |
66 | 24 | adantr 276 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℕ) |
67 | 66 | nnzd 9438 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℤ) |
68 | | prmz 12249 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
69 | 30, 68 | syl 14 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℤ) |
70 | | peano2zm 9355 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑄 ∈ ℤ → (𝑄 − 1) ∈
ℤ) |
71 | 69, 70 | syl 14 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℤ) |
72 | 66 | nnred 8995 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℝ) |
73 | 71 | zred 9439 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℝ) |
74 | | prmuz2 12269 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
(ℤ≥‘2)) |
75 | 30, 74 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈
(ℤ≥‘2)) |
76 | | uz2m1nn 9670 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑄 ∈
(ℤ≥‘2) → (𝑄 − 1) ∈ ℕ) |
77 | 75, 76 | syl 14 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℕ) |
78 | 77 | nnrpd 9760 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈
ℝ+) |
79 | | rphalflt 9749 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 − 1) ∈
ℝ+ → ((𝑄 − 1) / 2) < (𝑄 − 1)) |
80 | 78, 79 | syl 14 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 − 1) / 2) < (𝑄 − 1)) |
81 | 5, 80 | eqbrtrid 4064 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 < (𝑄 − 1)) |
82 | 72, 73, 81 | ltled 8138 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ≤ (𝑄 − 1)) |
83 | | eluz2 9598 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄 − 1) ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑄 − 1) ∈ ℤ ∧ 𝑁 ≤ (𝑄 − 1))) |
84 | 67, 71, 82, 83 | syl3anbrc 1183 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈
(ℤ≥‘𝑁)) |
85 | | fzss2 10130 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 − 1) ∈
(ℤ≥‘𝑁) → (1...𝑁) ⊆ (1...(𝑄 − 1))) |
86 | 84, 85 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (1...𝑁) ⊆ (1...(𝑄 − 1))) |
87 | | simprr 531 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...𝑁)) |
88 | 86, 87 | sseldd 3180 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...(𝑄 − 1))) |
89 | | fzm1ndvds 11998 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑄 − 1))) → ¬ 𝑄 ∥ 𝑦) |
90 | 32, 88, 89 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ 𝑦) |
91 | 4 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ≠ 𝑃) |
92 | 2 | eldifad 3164 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℙ) |
93 | 92 | adantr 276 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℙ) |
94 | | prmrp 12283 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄 ≠ 𝑃)) |
95 | 30, 93, 94 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄 ≠ 𝑃)) |
96 | 91, 95 | mpbird 167 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 gcd 𝑃) = 1) |
97 | | prmz 12249 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
98 | 93, 97 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℤ) |
99 | | elfzelz 10091 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℤ) |
100 | 99 | ad2antll 491 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℤ) |
101 | | coprmdvds 12230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄 ∥ 𝑦)) |
102 | 69, 98, 100, 101 | syl3anc 1249 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄 ∥ 𝑦)) |
103 | 96, 102 | mpan2d 428 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) → 𝑄 ∥ 𝑦)) |
104 | 90, 103 | mtod 664 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑃 · 𝑦)) |
105 | 38 | nncnd 8996 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℂ) |
106 | 36 | nncnd 8996 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℂ) |
107 | 105, 106 | mulcomd 8041 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑃 · 𝑦) = (𝑦 · 𝑃)) |
108 | 107 | breq2d 4041 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) ↔ 𝑄 ∥ (𝑦 · 𝑃))) |
109 | 104, 108 | mtbid 673 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑦 · 𝑃)) |
110 | | elfzelz 10091 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ) |
111 | 110 | ad2antrl 490 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℤ) |
112 | | dvdsmul2 11957 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑥 · 𝑄)) |
113 | 111, 69, 112 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∥ (𝑥 · 𝑄)) |
114 | | breq2 4033 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 · 𝑄) = (𝑦 · 𝑃) → (𝑄 ∥ (𝑥 · 𝑄) ↔ 𝑄 ∥ (𝑦 · 𝑃))) |
115 | 113, 114 | syl5ibcom 155 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) = (𝑦 · 𝑃) → 𝑄 ∥ (𝑦 · 𝑃))) |
116 | 115 | necon3bd 2407 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (¬ 𝑄 ∥ (𝑦 · 𝑃) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃))) |
117 | 109, 116 | mpd 13 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃)) |
118 | | nnq 9698 |
. . . . . . . . . . . . 13
⊢ ((𝑥 · 𝑄) ∈ ℕ → (𝑥 · 𝑄) ∈ ℚ) |
119 | 33, 118 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℚ) |
120 | | nnq 9698 |
. . . . . . . . . . . . 13
⊢ ((𝑦 · 𝑃) ∈ ℕ → (𝑦 · 𝑃) ∈ ℚ) |
121 | 39, 120 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℚ) |
122 | | qlttri2 9706 |
. . . . . . . . . . . 12
⊢ (((𝑥 · 𝑄) ∈ ℚ ∧ (𝑦 · 𝑃) ∈ ℚ) → ((𝑥 · 𝑄) ≠ (𝑦 · 𝑃) ↔ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
123 | 119, 121,
122 | syl2anc 411 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) ≠ (𝑦 · 𝑃) ↔ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
124 | 117, 123 | mpbid 147 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
125 | 124 | ex 115 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
126 | 125 | pm4.71rd 394 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))) |
127 | | ancom 266 |
. . . . . . . 8
⊢ ((((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
128 | 126, 127 | bitr2di 197 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)))) |
129 | 128 | opabbidv 4095 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))}) |
130 | | unopab 4108 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
131 | 55 | uneq2i 3310 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) |
132 | | andi 819 |
. . . . . . . 8
⊢ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
133 | 132 | opabbii 4096 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
134 | 130, 131,
133 | 3eqtr4i 2224 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
135 | | df-xp 4665 |
. . . . . 6
⊢
((1...𝑀) ×
(1...𝑁)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))} |
136 | 129, 134,
135 | 3eqtr4g 2251 |
. . . . 5
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ((1...𝑀) × (1...𝑁))) |
137 | 136 | fveq2d 5558 |
. . . 4
⊢ (𝜑 →
(♯‘({〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = (♯‘((1...𝑀) × (1...𝑁)))) |
138 | | inopab 4794 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
139 | 55 | ineq2i 3357 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) |
140 | | anandi 590 |
. . . . . . . 8
⊢ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
141 | 140 | opabbii 4096 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
142 | 138, 139,
141 | 3eqtr4i 2224 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
143 | 33 | nnred 8995 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℝ) |
144 | 39 | nnred 8995 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℝ) |
145 | | ltnsym2 8110 |
. . . . . . . . . . . . 13
⊢ (((𝑥 · 𝑄) ∈ ℝ ∧ (𝑦 · 𝑃) ∈ ℝ) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
146 | 143, 144,
145 | syl2anc 411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
147 | 146 | ex 115 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
148 | | imnan 691 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
149 | 147, 148 | sylib 122 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
150 | 149 | nexdv 1952 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
151 | 150 | nexdv 1952 |
. . . . . . . 8
⊢ (𝜑 → ¬ ∃𝑥∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
152 | | opabm 4311 |
. . . . . . . 8
⊢
(∃𝑗 𝑗 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} ↔ ∃𝑥∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
153 | 151, 152 | sylnibr 678 |
. . . . . . 7
⊢ (𝜑 → ¬ ∃𝑗 𝑗 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}) |
154 | | notm0 3467 |
. . . . . . 7
⊢ (¬
∃𝑗 𝑗 ∈ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅) |
155 | 153, 154 | sylib 122 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅) |
156 | 142, 155 | eqtrid 2238 |
. . . . 5
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅) |
157 | | hashun 10876 |
. . . . 5
⊢
(({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin ∧ 𝑆 ∈ Fin ∧ ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅) →
(♯‘({〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) |
158 | 44, 60, 156, 157 | syl3anc 1249 |
. . . 4
⊢ (𝜑 →
(♯‘({〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) |
159 | | hashxp 10897 |
. . . . . 6
⊢
(((1...𝑀) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ (♯‘((1...𝑀) × (1...𝑁))) = ((♯‘(1...𝑀)) · (♯‘(1...𝑁)))) |
160 | 23, 26, 159 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (♯‘((1...𝑀) × (1...𝑁))) = ((♯‘(1...𝑀)) · (♯‘(1...𝑁)))) |
161 | 21 | nnnn0d 9293 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
162 | | hashfz1 10854 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) |
163 | 161, 162 | syl 14 |
. . . . . 6
⊢ (𝜑 → (♯‘(1...𝑀)) = 𝑀) |
164 | 24 | nnnn0d 9293 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
165 | | hashfz1 10854 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
166 | 164, 165 | syl 14 |
. . . . . 6
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
167 | 163, 166 | oveq12d 5936 |
. . . . 5
⊢ (𝜑 → ((♯‘(1...𝑀)) ·
(♯‘(1...𝑁))) =
(𝑀 · 𝑁)) |
168 | 160, 167 | eqtrd 2226 |
. . . 4
⊢ (𝜑 → (♯‘((1...𝑀) × (1...𝑁))) = (𝑀 · 𝑁)) |
169 | 137, 158,
168 | 3eqtr3d 2234 |
. . 3
⊢ (𝜑 →
((♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆)) = (𝑀 · 𝑁)) |
170 | 169 | oveq2d 5934 |
. 2
⊢ (𝜑 →
(-1↑((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) = (-1↑(𝑀 · 𝑁))) |
171 | 57, 65, 170 | 3eqtr2d 2232 |
1
⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁))) |