Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1neg1t1neg1 Structured version   Visualization version   GIF version

Theorem 1neg1t1neg1 32753
Description: An integer unit times itself. (Contributed by Thierry Arnoux, 23-Aug-2020.)
Assertion
Ref Expression
1neg1t1neg1 (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1)

Proof of Theorem 1neg1t1neg1
StepHypRef Expression
1 elpri 4671 . 2 (𝑁 ∈ {-1, 1} → (𝑁 = -1 ∨ 𝑁 = 1))
2 id 22 . . . . 5 (𝑁 = -1 → 𝑁 = -1)
32, 2oveq12d 7468 . . . 4 (𝑁 = -1 → (𝑁 · 𝑁) = (-1 · -1))
4 neg1mulneg1e1 12508 . . . 4 (-1 · -1) = 1
53, 4eqtrdi 2796 . . 3 (𝑁 = -1 → (𝑁 · 𝑁) = 1)
6 id 22 . . . . 5 (𝑁 = 1 → 𝑁 = 1)
76, 6oveq12d 7468 . . . 4 (𝑁 = 1 → (𝑁 · 𝑁) = (1 · 1))
8 1t1e1 12457 . . . 4 (1 · 1) = 1
97, 8eqtrdi 2796 . . 3 (𝑁 = 1 → (𝑁 · 𝑁) = 1)
105, 9jaoi 856 . 2 ((𝑁 = -1 ∨ 𝑁 = 1) → (𝑁 · 𝑁) = 1)
111, 10syl 17 1 (𝑁 ∈ {-1, 1} → (𝑁 · 𝑁) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1537  wcel 2108  {cpr 4650  (class class class)co 7450  1c1 11187   · cmul 11191  -cneg 11523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-er 8765  df-en 9006  df-dom 9007  df-sdom 9008  df-pnf 11328  df-mnf 11329  df-ltxr 11331  df-sub 11524  df-neg 11525
This theorem is referenced by:  madjusmdetlem4  33778
  Copyright terms: Public domain W3C validator