MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg1mulneg1e1 Structured version   Visualization version   GIF version

Theorem neg1mulneg1e1 12450
Description: -1 · -1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
neg1mulneg1e1 (-1 · -1) = 1

Proof of Theorem neg1mulneg1e1
StepHypRef Expression
1 ax-1cn 11191 . . 3 1 ∈ ℂ
21, 1mul2negi 11687 . 2 (-1 · -1) = (1 · 1)
3 1t1e1 12399 . 2 (1 · 1) = 1
42, 3eqtri 2753 1 (-1 · -1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  (class class class)co 7413  1c1 11134   · cmul 11138  -cneg 11470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11275  df-mnf 11276  df-ltxr 11278  df-sub 11471  df-neg 11472
This theorem is referenced by:  m1expeven  14101  cnmsgnsubg  21508  evpmodpmf1o  21527  clmnegneg  25044  plydivlem1  26241  lgsneg  27267  lgsdilem  27270  lgsdir2lem4  27274  lgsdir2  27276  ipdirilem  30678  hvnegdii  30911  honegneg  31655  1neg1t1neg1  32559  odpmco  32849  cyc3evpm  32911  sgnmul  34215  signswch  34246  sqrtcval  43132  modexp2m1d  47011
  Copyright terms: Public domain W3C validator