MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg1mulneg1e1 Structured version   Visualization version   GIF version

Theorem neg1mulneg1e1 11842
Description: -1 · -1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
neg1mulneg1e1 (-1 · -1) = 1

Proof of Theorem neg1mulneg1e1
StepHypRef Expression
1 ax-1cn 10587 . . 3 1 ∈ ℂ
21, 1mul2negi 11080 . 2 (-1 · -1) = (1 · 1)
3 1t1e1 11791 . 2 (1 · 1) = 1
42, 3eqtri 2848 1 (-1 · -1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  (class class class)co 7151  1c1 10530   · cmul 10534  -cneg 10863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-ltxr 10672  df-sub 10864  df-neg 10865
This theorem is referenced by:  m1expeven  13469  cnmsgnsubg  20637  evpmodpmf1o  20656  clmnegneg  23623  plydivlem1  24797  lgsneg  25811  lgsdilem  25814  lgsdir2lem4  25818  lgsdir2  25820  ipdirilem  28520  hvnegdii  28753  honegneg  29497  1neg1t1neg1  30386  odpmco  30644  cyc3evpm  30706  sgnmul  31686  signswch  31717  modexp2m1d  43605
  Copyright terms: Public domain W3C validator