MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg1mulneg1e1 Structured version   Visualization version   GIF version

Theorem neg1mulneg1e1 12447
Description: -1 · -1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
neg1mulneg1e1 (-1 · -1) = 1

Proof of Theorem neg1mulneg1e1
StepHypRef Expression
1 ax-1cn 11188 . . 3 1 ∈ ℂ
21, 1mul2negi 11684 . 2 (-1 · -1) = (1 · 1)
3 1t1e1 12396 . 2 (1 · 1) = 1
42, 3eqtri 2755 1 (-1 · -1) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  (class class class)co 7414  1c1 11131   · cmul 11135  -cneg 11467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-ltxr 11275  df-sub 11468  df-neg 11469
This theorem is referenced by:  m1expeven  14098  cnmsgnsubg  21496  evpmodpmf1o  21515  clmnegneg  25018  plydivlem1  26215  lgsneg  27241  lgsdilem  27244  lgsdir2lem4  27248  lgsdir2  27250  ipdirilem  30626  hvnegdii  30859  honegneg  31603  1neg1t1neg1  32503  odpmco  32787  cyc3evpm  32849  sgnmul  34098  signswch  34129  sqrtcval  42994  modexp2m1d  46875
  Copyright terms: Public domain W3C validator