![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1mulneg1e1 | Structured version Visualization version GIF version |
Description: -1 · -1 is 1. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
neg1mulneg1e1 | ⊢ (-1 · -1) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10280 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 1, 1 | mul2negi 10768 | . 2 ⊢ (-1 · -1) = (1 · 1) |
3 | 1t1e1 11478 | . 2 ⊢ (1 · 1) = 1 | |
4 | 2, 3 | eqtri 2819 | 1 ⊢ (-1 · -1) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 (class class class)co 6876 1c1 10223 · cmul 10227 -cneg 10555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-ltxr 10366 df-sub 10556 df-neg 10557 |
This theorem is referenced by: m1expeven 13157 cnmsgnsubg 20241 evpmodpmf1o 20261 clmnegneg 23228 plydivlem1 24386 lgsneg 25395 lgsdilem 25398 lgsdir2lem4 25402 lgsdir2 25404 ipdirilem 28201 hvnegdii 28436 honegneg 29182 1neg1t1neg1 30024 sgnmul 31113 signswch 31148 modexp2m1d 42299 |
Copyright terms: Public domain | W3C validator |