Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incat Structured version   Visualization version   GIF version

Theorem incat 49712
Description: Constructing a category with at most one object and at most two morphisms. If 𝑋 is a set then 𝐶 is the category 𝐴 in Exercise 3G of [Adamek] p. 45. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
incat.c 𝐶 = {⟨(Base‘ndx), {𝑋}⟩, ⟨(Hom ‘ndx), {⟨𝑋, 𝑋, 𝐻⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}⟩}
incat.h 𝐻 = {𝐹, 𝐺}
incat.x · = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔))
Assertion
Ref Expression
incat ((𝐹𝐺𝐺𝑉) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 𝐺)))
Distinct variable groups:   𝑦, ·   𝑦,𝐶   𝑓,𝐹,𝑔   𝑦,𝐹   𝑓,𝐺,𝑔   𝑦,𝐺   𝑓,𝐻,𝑔   𝑦,𝐻   𝑓,𝑉,𝑔   𝑦,𝑉   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑓,𝑔)   · (𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem incat
StepHypRef Expression
1 incat.c . . . 4 𝐶 = {⟨(Base‘ndx), {𝑋}⟩, ⟨(Hom ‘ndx), {⟨𝑋, 𝑋, 𝐻⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}⟩}
2 snex 5372 . . . 4 {𝑋} ∈ V
31, 2catbas 49337 . . 3 {𝑋} = (Base‘𝐶)
43a1i 11 . 2 ((𝐹𝐺𝐺𝑉) → {𝑋} = (Base‘𝐶))
5 snex 5372 . . . 4 {⟨𝑋, 𝑋, 𝐻⟩} ∈ V
61, 5cathomfval 49338 . . 3 {⟨𝑋, 𝑋, 𝐻⟩} = (Hom ‘𝐶)
76a1i 11 . 2 ((𝐹𝐺𝐺𝑉) → {⟨𝑋, 𝑋, 𝐻⟩} = (Hom ‘𝐶))
8 snex 5372 . . . 4 {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩} ∈ V
91, 8catcofval 49339 . . 3 {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩} = (comp‘𝐶)
109a1i 11 . 2 ((𝐹𝐺𝐺𝑉) → {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩} = (comp‘𝐶))
11 incat.h . . . . 5 𝐻 = {𝐹, 𝐺}
12 prex 5373 . . . . 5 {𝐹, 𝐺} ∈ V
1311, 12eqeltri 2827 . . . 4 𝐻 ∈ V
1413ovsn2 48971 . . 3 (𝑋{⟨𝑋, 𝑋, 𝐻⟩}𝑋) = 𝐻
1514, 11eqtri 2754 . 2 (𝑋{⟨𝑋, 𝑋, 𝐻⟩}𝑋) = {𝐹, 𝐺}
16 incat.x . . . . . . 7 · = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔))
1713, 13mpoex 8011 . . . . . . 7 (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔)) ∈ V
1816, 17eqeltri 2827 . . . . . 6 · ∈ V
1918ovsn2 48971 . . . . 5 (⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋) = ·
2019, 16eqtri 2754 . . . 4 (⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋) = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔))
2120a1i 11 . . 3 ((𝐹𝐺𝐺𝑉) → (⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋) = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔)))
22 ineq12 4162 . . . . 5 ((𝑓 = 𝐺𝑔 = 𝐺) → (𝑓𝑔) = (𝐺𝐺))
23 inidm 4174 . . . . 5 (𝐺𝐺) = 𝐺
2422, 23eqtrdi 2782 . . . 4 ((𝑓 = 𝐺𝑔 = 𝐺) → (𝑓𝑔) = 𝐺)
2524adantl 481 . . 3 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐺𝑔 = 𝐺)) → (𝑓𝑔) = 𝐺)
26 prid2g 4711 . . . . 5 (𝐺𝑉𝐺 ∈ {𝐹, 𝐺})
2726, 11eleqtrrdi 2842 . . . 4 (𝐺𝑉𝐺𝐻)
2827adantl 481 . . 3 ((𝐹𝐺𝐺𝑉) → 𝐺𝐻)
2921, 25, 28, 28, 28ovmpod 7498 . 2 ((𝐹𝐺𝐺𝑉) → (𝐺(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐺) = 𝐺)
30 ineq12 4162 . . . 4 ((𝑓 = 𝐺𝑔 = 𝐹) → (𝑓𝑔) = (𝐺𝐹))
31 sseqin2 4170 . . . . . 6 (𝐹𝐺 ↔ (𝐺𝐹) = 𝐹)
3231biimpi 216 . . . . 5 (𝐹𝐺 → (𝐺𝐹) = 𝐹)
3332adantr 480 . . . 4 ((𝐹𝐺𝐺𝑉) → (𝐺𝐹) = 𝐹)
3430, 33sylan9eqr 2788 . . 3 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐺𝑔 = 𝐹)) → (𝑓𝑔) = 𝐹)
35 ssexg 5259 . . . . 5 ((𝐹𝐺𝐺𝑉) → 𝐹 ∈ V)
36 prid1g 4710 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ {𝐹, 𝐺})
3735, 36syl 17 . . . 4 ((𝐹𝐺𝐺𝑉) → 𝐹 ∈ {𝐹, 𝐺})
3837, 11eleqtrrdi 2842 . . 3 ((𝐹𝐺𝐺𝑉) → 𝐹𝐻)
3921, 34, 28, 38, 38ovmpod 7498 . 2 ((𝐹𝐺𝐺𝑉) → (𝐺(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐹) = 𝐹)
40 ineq12 4162 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑔) = (𝐹𝐺))
41 dfss2 3915 . . . . . 6 (𝐹𝐺 ↔ (𝐹𝐺) = 𝐹)
4241biimpi 216 . . . . 5 (𝐹𝐺 → (𝐹𝐺) = 𝐹)
4342adantr 480 . . . 4 ((𝐹𝐺𝐺𝑉) → (𝐹𝐺) = 𝐹)
4440, 43sylan9eqr 2788 . . 3 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑔) = 𝐹)
4521, 44, 38, 28, 38ovmpod 7498 . 2 ((𝐹𝐺𝐺𝑉) → (𝐹(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐺) = 𝐹)
46 ineq12 4162 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐹) → (𝑓𝑔) = (𝐹𝐹))
47 inidm 4174 . . . . . 6 (𝐹𝐹) = 𝐹
4846, 47eqtrdi 2782 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐹) → (𝑓𝑔) = 𝐹)
4948adantl 481 . . . 4 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐹𝑔 = 𝐹)) → (𝑓𝑔) = 𝐹)
5021, 49, 38, 38, 38ovmpod 7498 . . 3 ((𝐹𝐺𝐺𝑉) → (𝐹(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐹) = 𝐹)
5150, 37eqeltrd 2831 . 2 ((𝐹𝐺𝐺𝑉) → (𝐹(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐹) ∈ {𝐹, 𝐺})
524, 7, 10, 15, 29, 39, 45, 512arwcat 49711 1 ((𝐹𝐺𝐺𝑉) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  {csn 4573  {cpr 4575  {ctp 4577  cop 4579  cotp 4581  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  ndxcnx 17104  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575
This theorem is referenced by:  setc1onsubc  49713
  Copyright terms: Public domain W3C validator