Proof of Theorem incat
| Step | Hyp | Ref
| Expression |
| 1 | | incat.c |
. . . 4
⊢ 𝐶 = {〈(Base‘ndx),
{𝑋}〉, 〈(Hom
‘ndx), {〈𝑋,
𝑋, 𝐻〉}〉, 〈(comp‘ndx),
{〈〈𝑋, 𝑋〉, 𝑋, ·
〉}〉} |
| 2 | | snex 5404 |
. . . 4
⊢ {𝑋} ∈ V |
| 3 | 1, 2 | catbas 49009 |
. . 3
⊢ {𝑋} = (Base‘𝐶) |
| 4 | 3 | a1i 11 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → {𝑋} = (Base‘𝐶)) |
| 5 | | snex 5404 |
. . . 4
⊢
{〈𝑋, 𝑋, 𝐻〉} ∈ V |
| 6 | 1, 5 | cathomfval 49010 |
. . 3
⊢
{〈𝑋, 𝑋, 𝐻〉} = (Hom ‘𝐶) |
| 7 | 6 | a1i 11 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → {〈𝑋, 𝑋, 𝐻〉} = (Hom ‘𝐶)) |
| 8 | | snex 5404 |
. . . 4
⊢
{〈〈𝑋,
𝑋〉, 𝑋, · 〉} ∈
V |
| 9 | 1, 8 | catcofval 49011 |
. . 3
⊢
{〈〈𝑋,
𝑋〉, 𝑋, · 〉} =
(comp‘𝐶) |
| 10 | 9 | a1i 11 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → {〈〈𝑋, 𝑋〉, 𝑋, · 〉} =
(comp‘𝐶)) |
| 11 | | incat.h |
. . . . 5
⊢ 𝐻 = {𝐹, 𝐺} |
| 12 | | prex 5405 |
. . . . 5
⊢ {𝐹, 𝐺} ∈ V |
| 13 | 11, 12 | eqeltri 2829 |
. . . 4
⊢ 𝐻 ∈ V |
| 14 | 13 | ovsn2 48731 |
. . 3
⊢ (𝑋{〈𝑋, 𝑋, 𝐻〉}𝑋) = 𝐻 |
| 15 | 14, 11 | eqtri 2757 |
. 2
⊢ (𝑋{〈𝑋, 𝑋, 𝐻〉}𝑋) = {𝐹, 𝐺} |
| 16 | | incat.x |
. . . . . . 7
⊢ · =
(𝑓 ∈ 𝐻, 𝑔 ∈ 𝐻 ↦ (𝑓 ∩ 𝑔)) |
| 17 | 13, 13 | mpoex 8073 |
. . . . . . 7
⊢ (𝑓 ∈ 𝐻, 𝑔 ∈ 𝐻 ↦ (𝑓 ∩ 𝑔)) ∈ V |
| 18 | 16, 17 | eqeltri 2829 |
. . . . . 6
⊢ · ∈
V |
| 19 | 18 | ovsn2 48731 |
. . . . 5
⊢
(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋) = · |
| 20 | 19, 16 | eqtri 2757 |
. . . 4
⊢
(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋) = (𝑓 ∈ 𝐻, 𝑔 ∈ 𝐻 ↦ (𝑓 ∩ 𝑔)) |
| 21 | 20 | a1i 11 |
. . 3
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋) = (𝑓 ∈ 𝐻, 𝑔 ∈ 𝐻 ↦ (𝑓 ∩ 𝑔))) |
| 22 | | ineq12 4188 |
. . . . 5
⊢ ((𝑓 = 𝐺 ∧ 𝑔 = 𝐺) → (𝑓 ∩ 𝑔) = (𝐺 ∩ 𝐺)) |
| 23 | | inidm 4200 |
. . . . 5
⊢ (𝐺 ∩ 𝐺) = 𝐺 |
| 24 | 22, 23 | eqtrdi 2785 |
. . . 4
⊢ ((𝑓 = 𝐺 ∧ 𝑔 = 𝐺) → (𝑓 ∩ 𝑔) = 𝐺) |
| 25 | 24 | adantl 481 |
. . 3
⊢ (((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ (𝑓 = 𝐺 ∧ 𝑔 = 𝐺)) → (𝑓 ∩ 𝑔) = 𝐺) |
| 26 | | prid2g 4735 |
. . . . 5
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ {𝐹, 𝐺}) |
| 27 | 26, 11 | eleqtrrdi 2844 |
. . . 4
⊢ (𝐺 ∈ 𝑉 → 𝐺 ∈ 𝐻) |
| 28 | 27 | adantl 481 |
. . 3
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → 𝐺 ∈ 𝐻) |
| 29 | 21, 25, 28, 28, 28 | ovmpod 7554 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐺(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋)𝐺) = 𝐺) |
| 30 | | ineq12 4188 |
. . . 4
⊢ ((𝑓 = 𝐺 ∧ 𝑔 = 𝐹) → (𝑓 ∩ 𝑔) = (𝐺 ∩ 𝐹)) |
| 31 | | sseqin2 4196 |
. . . . . 6
⊢ (𝐹 ⊆ 𝐺 ↔ (𝐺 ∩ 𝐹) = 𝐹) |
| 32 | 31 | biimpi 216 |
. . . . 5
⊢ (𝐹 ⊆ 𝐺 → (𝐺 ∩ 𝐹) = 𝐹) |
| 33 | 32 | adantr 480 |
. . . 4
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐺 ∩ 𝐹) = 𝐹) |
| 34 | 30, 33 | sylan9eqr 2791 |
. . 3
⊢ (((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ (𝑓 = 𝐺 ∧ 𝑔 = 𝐹)) → (𝑓 ∩ 𝑔) = 𝐹) |
| 35 | | ssexg 5291 |
. . . . 5
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → 𝐹 ∈ V) |
| 36 | | prid1g 4734 |
. . . . 5
⊢ (𝐹 ∈ V → 𝐹 ∈ {𝐹, 𝐺}) |
| 37 | 35, 36 | syl 17 |
. . . 4
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → 𝐹 ∈ {𝐹, 𝐺}) |
| 38 | 37, 11 | eleqtrrdi 2844 |
. . 3
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → 𝐹 ∈ 𝐻) |
| 39 | 21, 34, 28, 38, 38 | ovmpod 7554 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐺(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋)𝐹) = 𝐹) |
| 40 | | ineq12 4188 |
. . . 4
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∩ 𝑔) = (𝐹 ∩ 𝐺)) |
| 41 | | dfss2 3942 |
. . . . . 6
⊢ (𝐹 ⊆ 𝐺 ↔ (𝐹 ∩ 𝐺) = 𝐹) |
| 42 | 41 | biimpi 216 |
. . . . 5
⊢ (𝐹 ⊆ 𝐺 → (𝐹 ∩ 𝐺) = 𝐹) |
| 43 | 42 | adantr 480 |
. . . 4
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹 ∩ 𝐺) = 𝐹) |
| 44 | 40, 43 | sylan9eqr 2791 |
. . 3
⊢ (((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (𝑓 ∩ 𝑔) = 𝐹) |
| 45 | 21, 44, 38, 28, 38 | ovmpod 7554 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋)𝐺) = 𝐹) |
| 46 | | ineq12 4188 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐹) → (𝑓 ∩ 𝑔) = (𝐹 ∩ 𝐹)) |
| 47 | | inidm 4200 |
. . . . . 6
⊢ (𝐹 ∩ 𝐹) = 𝐹 |
| 48 | 46, 47 | eqtrdi 2785 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐹) → (𝑓 ∩ 𝑔) = 𝐹) |
| 49 | 48 | adantl 481 |
. . . 4
⊢ (((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐹)) → (𝑓 ∩ 𝑔) = 𝐹) |
| 50 | 21, 49, 38, 38, 38 | ovmpod 7554 |
. . 3
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋)𝐹) = 𝐹) |
| 51 | 50, 37 | eqeltrd 2833 |
. 2
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐹(〈𝑋, 𝑋〉{〈〈𝑋, 𝑋〉, 𝑋, · 〉}𝑋)𝐹) ∈ {𝐹, 𝐺}) |
| 52 | 4, 7, 10, 15, 29, 39, 45, 51 | 2arwcat 49338 |
1
⊢ ((𝐹 ⊆ 𝐺 ∧ 𝐺 ∈ 𝑉) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 𝐺))) |