Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  incat Structured version   Visualization version   GIF version

Theorem incat 49596
Description: Constructing a category with at most one object and at most two morphisms. If 𝑋 is a set then 𝐶 is the category 𝐴 in Exercise 3G of [Adamek] p. 45. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
incat.c 𝐶 = {⟨(Base‘ndx), {𝑋}⟩, ⟨(Hom ‘ndx), {⟨𝑋, 𝑋, 𝐻⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}⟩}
incat.h 𝐻 = {𝐹, 𝐺}
incat.x · = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔))
Assertion
Ref Expression
incat ((𝐹𝐺𝐺𝑉) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 𝐺)))
Distinct variable groups:   𝑦, ·   𝑦,𝐶   𝑓,𝐹,𝑔   𝑦,𝐹   𝑓,𝐺,𝑔   𝑦,𝐺   𝑓,𝐻,𝑔   𝑦,𝐻   𝑓,𝑉,𝑔   𝑦,𝑉   𝑦,𝑋
Allowed substitution hints:   𝐶(𝑓,𝑔)   · (𝑓,𝑔)   𝑋(𝑓,𝑔)

Proof of Theorem incat
StepHypRef Expression
1 incat.c . . . 4 𝐶 = {⟨(Base‘ndx), {𝑋}⟩, ⟨(Hom ‘ndx), {⟨𝑋, 𝑋, 𝐻⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}⟩}
2 snex 5375 . . . 4 {𝑋} ∈ V
31, 2catbas 49221 . . 3 {𝑋} = (Base‘𝐶)
43a1i 11 . 2 ((𝐹𝐺𝐺𝑉) → {𝑋} = (Base‘𝐶))
5 snex 5375 . . . 4 {⟨𝑋, 𝑋, 𝐻⟩} ∈ V
61, 5cathomfval 49222 . . 3 {⟨𝑋, 𝑋, 𝐻⟩} = (Hom ‘𝐶)
76a1i 11 . 2 ((𝐹𝐺𝐺𝑉) → {⟨𝑋, 𝑋, 𝐻⟩} = (Hom ‘𝐶))
8 snex 5375 . . . 4 {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩} ∈ V
91, 8catcofval 49223 . . 3 {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩} = (comp‘𝐶)
109a1i 11 . 2 ((𝐹𝐺𝐺𝑉) → {⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩} = (comp‘𝐶))
11 incat.h . . . . 5 𝐻 = {𝐹, 𝐺}
12 prex 5376 . . . . 5 {𝐹, 𝐺} ∈ V
1311, 12eqeltri 2824 . . . 4 𝐻 ∈ V
1413ovsn2 48855 . . 3 (𝑋{⟨𝑋, 𝑋, 𝐻⟩}𝑋) = 𝐻
1514, 11eqtri 2752 . 2 (𝑋{⟨𝑋, 𝑋, 𝐻⟩}𝑋) = {𝐹, 𝐺}
16 incat.x . . . . . . 7 · = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔))
1713, 13mpoex 8014 . . . . . . 7 (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔)) ∈ V
1816, 17eqeltri 2824 . . . . . 6 · ∈ V
1918ovsn2 48855 . . . . 5 (⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋) = ·
2019, 16eqtri 2752 . . . 4 (⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋) = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔))
2120a1i 11 . . 3 ((𝐹𝐺𝐺𝑉) → (⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋) = (𝑓𝐻, 𝑔𝐻 ↦ (𝑓𝑔)))
22 ineq12 4166 . . . . 5 ((𝑓 = 𝐺𝑔 = 𝐺) → (𝑓𝑔) = (𝐺𝐺))
23 inidm 4178 . . . . 5 (𝐺𝐺) = 𝐺
2422, 23eqtrdi 2780 . . . 4 ((𝑓 = 𝐺𝑔 = 𝐺) → (𝑓𝑔) = 𝐺)
2524adantl 481 . . 3 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐺𝑔 = 𝐺)) → (𝑓𝑔) = 𝐺)
26 prid2g 4713 . . . . 5 (𝐺𝑉𝐺 ∈ {𝐹, 𝐺})
2726, 11eleqtrrdi 2839 . . . 4 (𝐺𝑉𝐺𝐻)
2827adantl 481 . . 3 ((𝐹𝐺𝐺𝑉) → 𝐺𝐻)
2921, 25, 28, 28, 28ovmpod 7501 . 2 ((𝐹𝐺𝐺𝑉) → (𝐺(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐺) = 𝐺)
30 ineq12 4166 . . . 4 ((𝑓 = 𝐺𝑔 = 𝐹) → (𝑓𝑔) = (𝐺𝐹))
31 sseqin2 4174 . . . . . 6 (𝐹𝐺 ↔ (𝐺𝐹) = 𝐹)
3231biimpi 216 . . . . 5 (𝐹𝐺 → (𝐺𝐹) = 𝐹)
3332adantr 480 . . . 4 ((𝐹𝐺𝐺𝑉) → (𝐺𝐹) = 𝐹)
3430, 33sylan9eqr 2786 . . 3 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐺𝑔 = 𝐹)) → (𝑓𝑔) = 𝐹)
35 ssexg 5262 . . . . 5 ((𝐹𝐺𝐺𝑉) → 𝐹 ∈ V)
36 prid1g 4712 . . . . 5 (𝐹 ∈ V → 𝐹 ∈ {𝐹, 𝐺})
3735, 36syl 17 . . . 4 ((𝐹𝐺𝐺𝑉) → 𝐹 ∈ {𝐹, 𝐺})
3837, 11eleqtrrdi 2839 . . 3 ((𝐹𝐺𝐺𝑉) → 𝐹𝐻)
3921, 34, 28, 38, 38ovmpod 7501 . 2 ((𝐹𝐺𝐺𝑉) → (𝐺(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐹) = 𝐹)
40 ineq12 4166 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑔) = (𝐹𝐺))
41 dfss2 3921 . . . . . 6 (𝐹𝐺 ↔ (𝐹𝐺) = 𝐹)
4241biimpi 216 . . . . 5 (𝐹𝐺 → (𝐹𝐺) = 𝐹)
4342adantr 480 . . . 4 ((𝐹𝐺𝐺𝑉) → (𝐹𝐺) = 𝐹)
4440, 43sylan9eqr 2786 . . 3 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (𝑓𝑔) = 𝐹)
4521, 44, 38, 28, 38ovmpod 7501 . 2 ((𝐹𝐺𝐺𝑉) → (𝐹(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐺) = 𝐹)
46 ineq12 4166 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐹) → (𝑓𝑔) = (𝐹𝐹))
47 inidm 4178 . . . . . 6 (𝐹𝐹) = 𝐹
4846, 47eqtrdi 2780 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐹) → (𝑓𝑔) = 𝐹)
4948adantl 481 . . . 4 (((𝐹𝐺𝐺𝑉) ∧ (𝑓 = 𝐹𝑔 = 𝐹)) → (𝑓𝑔) = 𝐹)
5021, 49, 38, 38, 38ovmpod 7501 . . 3 ((𝐹𝐺𝐺𝑉) → (𝐹(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐹) = 𝐹)
5150, 37eqeltrd 2828 . 2 ((𝐹𝐺𝐺𝑉) → (𝐹(⟨𝑋, 𝑋⟩{⟨⟨𝑋, 𝑋⟩, 𝑋, · ⟩}𝑋)𝐹) ∈ {𝐹, 𝐺})
524, 7, 10, 15, 29, 39, 45, 512arwcat 49595 1 ((𝐹𝐺𝐺𝑉) → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  {csn 4577  {cpr 4579  {ctp 4581  cop 4583  cotp 4585  cmpt 5173  cfv 6482  (class class class)co 7349  cmpo 7351  ndxcnx 17104  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575
This theorem is referenced by:  setc1onsubc  49597
  Copyright terms: Public domain W3C validator