| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version GIF version | ||
| Description: - Lemma for ostth 27526: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20706 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27514 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
| padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| ostth.k | ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| ostth.1 | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| ostth1.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
| ostth1.3 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) |
| Ref | Expression |
|---|---|
| ostth1 | ⊢ (𝜑 → 𝐹 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qrng.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 2 | qabsabv.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑄) | |
| 3 | ostth.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
| 4 | 1 | qdrng 27507 | . . 3 ⊢ 𝑄 ∈ DivRing |
| 5 | 1 | qrngbas 27506 | . . . 4 ⊢ ℚ = (Base‘𝑄) |
| 6 | 1 | qrng0 27508 | . . . 4 ⊢ 0 = (0g‘𝑄) |
| 7 | ostth.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) | |
| 8 | 2, 5, 6, 7 | abvtriv 20719 | . . 3 ⊢ (𝑄 ∈ DivRing → 𝐾 ∈ 𝐴) |
| 9 | 4, 8 | mp1i 13 | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
| 10 | ostth1.3 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) | |
| 11 | 10 | r19.21bi 3227 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ (𝐹‘𝑛) < 1) |
| 12 | prmnn 16620 | . . . . 5 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
| 13 | ostth1.2 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) | |
| 14 | 13 | r19.21bi 3227 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ 1 < (𝐹‘𝑛)) |
| 15 | 12, 14 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ 1 < (𝐹‘𝑛)) |
| 16 | nnq 12897 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℚ) | |
| 17 | 12, 16 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℚ) |
| 18 | 2, 5 | abvcl 20701 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ) → (𝐹‘𝑛) ∈ ℝ) |
| 19 | 3, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) ∈ ℝ) |
| 20 | 1re 11150 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | lttri3 11233 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) |
| 23 | 11, 15, 22 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = 1) |
| 24 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℕ) |
| 25 | eqeq1 2733 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0)) | |
| 26 | 25 | ifbid 4508 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1)) |
| 27 | c0ex 11144 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 28 | 1ex 11146 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 29 | 27, 28 | ifex 4535 | . . . . . . 7 ⊢ if(𝑛 = 0, 0, 1) ∈ V |
| 30 | 26, 7, 29 | fvmpt 6950 | . . . . . 6 ⊢ (𝑛 ∈ ℚ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 31 | 16, 30 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 32 | nnne0 12196 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | |
| 33 | 32 | neneqd 2930 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ¬ 𝑛 = 0) |
| 34 | 33 | iffalsed 4495 | . . . . 5 ⊢ (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1) |
| 35 | 31, 34 | eqtrd 2764 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = 1) |
| 36 | 24, 35 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐾‘𝑛) = 1) |
| 37 | 23, 36 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = (𝐾‘𝑛)) |
| 38 | 1, 2, 3, 9, 37 | ostthlem2 27515 | 1 ⊢ (𝜑 → 𝐹 = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ifcif 4484 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 < clt 11184 -cneg 11382 ℕcn 12162 ℚcq 12883 ↑cexp 14002 ℙcprime 16617 pCnt cpc 16783 ↾s cress 17176 DivRingcdr 20614 AbsValcabv 20693 ℂfldccnfld 21240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-ico 13288 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-subrng 20431 df-subrg 20455 df-rlreg 20579 df-domn 20580 df-drng 20616 df-abv 20694 df-cnfld 21241 |
| This theorem is referenced by: ostth 27526 |
| Copyright terms: Public domain | W3C validator |