MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth1 Structured version   Visualization version   GIF version

Theorem ostth1 27697
Description: - Lemma for ostth 27703: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20846 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27691 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth1.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth1.3 (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹𝑛) < 1)
Assertion
Ref Expression
ostth1 (𝜑𝐹 = 𝐾)
Distinct variable groups:   𝑛,𝐾   𝑥,𝑛,𝑞,𝜑   𝐴,𝑛,𝑞,𝑥   𝑄,𝑛,𝑥   𝑛,𝐹,𝑞,𝑥
Allowed substitution hints:   𝑄(𝑞)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem ostth1
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostth.1 . 2 (𝜑𝐹𝐴)
41qdrng 27684 . . 3 𝑄 ∈ DivRing
51qrngbas 27683 . . . 4 ℚ = (Base‘𝑄)
61qrng0 27685 . . . 4 0 = (0g𝑄)
7 ostth.k . . . 4 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
82, 5, 6, 7abvtriv 20859 . . 3 (𝑄 ∈ DivRing → 𝐾𝐴)
94, 8mp1i 13 . 2 (𝜑𝐾𝐴)
10 ostth1.3 . . . . 5 (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹𝑛) < 1)
1110r19.21bi 3257 . . . 4 ((𝜑𝑛 ∈ ℙ) → ¬ (𝐹𝑛) < 1)
12 prmnn 16723 . . . . 5 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
13 ostth1.2 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
1413r19.21bi 3257 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ¬ 1 < (𝐹𝑛))
1512, 14sylan2 592 . . . 4 ((𝜑𝑛 ∈ ℙ) → ¬ 1 < (𝐹𝑛))
16 nnq 13029 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1712, 16syl 17 . . . . . 6 (𝑛 ∈ ℙ → 𝑛 ∈ ℚ)
182, 5abvcl 20841 . . . . . 6 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
193, 17, 18syl2an 595 . . . . 5 ((𝜑𝑛 ∈ ℙ) → (𝐹𝑛) ∈ ℝ)
20 1re 11292 . . . . 5 1 ∈ ℝ
21 lttri3 11375 . . . . 5 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) = 1 ↔ (¬ (𝐹𝑛) < 1 ∧ ¬ 1 < (𝐹𝑛))))
2219, 20, 21sylancl 585 . . . 4 ((𝜑𝑛 ∈ ℙ) → ((𝐹𝑛) = 1 ↔ (¬ (𝐹𝑛) < 1 ∧ ¬ 1 < (𝐹𝑛))))
2311, 15, 22mpbir2and 712 . . 3 ((𝜑𝑛 ∈ ℙ) → (𝐹𝑛) = 1)
2412adantl 481 . . . 4 ((𝜑𝑛 ∈ ℙ) → 𝑛 ∈ ℕ)
25 eqeq1 2744 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0))
2625ifbid 4571 . . . . . . 7 (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1))
27 c0ex 11286 . . . . . . . 8 0 ∈ V
28 1ex 11288 . . . . . . . 8 1 ∈ V
2927, 28ifex 4598 . . . . . . 7 if(𝑛 = 0, 0, 1) ∈ V
3026, 7, 29fvmpt 7031 . . . . . 6 (𝑛 ∈ ℚ → (𝐾𝑛) = if(𝑛 = 0, 0, 1))
3116, 30syl 17 . . . . 5 (𝑛 ∈ ℕ → (𝐾𝑛) = if(𝑛 = 0, 0, 1))
32 nnne0 12329 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3332neneqd 2951 . . . . . 6 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
3433iffalsed 4559 . . . . 5 (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1)
3531, 34eqtrd 2780 . . . 4 (𝑛 ∈ ℕ → (𝐾𝑛) = 1)
3624, 35syl 17 . . 3 ((𝜑𝑛 ∈ ℙ) → (𝐾𝑛) = 1)
3723, 36eqtr4d 2783 . 2 ((𝜑𝑛 ∈ ℙ) → (𝐹𝑛) = (𝐾𝑛))
381, 2, 3, 9, 37ostthlem2 27692 1 (𝜑𝐹 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  ifcif 4548   class class class wbr 5166  cmpt 5249  cfv 6575  (class class class)co 7450  cr 11185  0cc0 11186  1c1 11187   < clt 11326  -cneg 11523  cn 12295  cq 13015  cexp 14114  cprime 16720   pCnt cpc 16885  s cress 17289  DivRingcdr 20753  AbsValcabv 20833  fldccnfld 21389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-cnex 11242  ax-resscn 11243  ax-1cn 11244  ax-icn 11245  ax-addcl 11246  ax-addrcl 11247  ax-mulcl 11248  ax-mulrcl 11249  ax-mulcom 11250  ax-addass 11251  ax-mulass 11252  ax-distr 11253  ax-i2m1 11254  ax-1ne0 11255  ax-1rid 11256  ax-rnegex 11257  ax-rrecex 11258  ax-cnre 11259  ax-pre-lttri 11260  ax-pre-lttrn 11261  ax-pre-ltadd 11262  ax-pre-mulgt0 11263  ax-pre-sup 11264  ax-addf 11265  ax-mulf 11266
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-riota 7406  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-tpos 8269  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-2o 8525  df-er 8765  df-map 8888  df-en 9006  df-dom 9007  df-sdom 9008  df-fin 9009  df-sup 9513  df-pnf 11328  df-mnf 11329  df-xr 11330  df-ltxr 11331  df-le 11332  df-sub 11524  df-neg 11525  df-div 11950  df-nn 12296  df-2 12358  df-3 12359  df-4 12360  df-5 12361  df-6 12362  df-7 12363  df-8 12364  df-9 12365  df-n0 12556  df-z 12642  df-dec 12761  df-uz 12906  df-q 13016  df-rp 13060  df-ico 13415  df-fz 13570  df-seq 14055  df-exp 14115  df-cj 15150  df-re 15151  df-im 15152  df-sqrt 15286  df-abs 15287  df-dvds 16305  df-prm 16721  df-struct 17196  df-sets 17213  df-slot 17231  df-ndx 17243  df-base 17261  df-ress 17290  df-plusg 17326  df-mulr 17327  df-starv 17328  df-tset 17332  df-ple 17333  df-ds 17335  df-unif 17336  df-0g 17503  df-mgm 18680  df-sgrp 18759  df-mnd 18775  df-grp 18978  df-minusg 18979  df-subg 19165  df-cmn 19826  df-abl 19827  df-mgp 20164  df-rng 20182  df-ur 20211  df-ring 20264  df-cring 20265  df-oppr 20362  df-dvdsr 20385  df-unit 20386  df-invr 20416  df-dvr 20429  df-nzr 20541  df-subrng 20574  df-subrg 20599  df-rlreg 20718  df-domn 20719  df-drng 20755  df-abv 20834  df-cnfld 21390
This theorem is referenced by:  ostth  27703
  Copyright terms: Public domain W3C validator