| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version GIF version | ||
| Description: - Lemma for ostth 27619: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20790 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27607 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
| padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| ostth.k | ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| ostth.1 | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| ostth1.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
| ostth1.3 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) |
| Ref | Expression |
|---|---|
| ostth1 | ⊢ (𝜑 → 𝐹 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qrng.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 2 | qabsabv.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑄) | |
| 3 | ostth.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
| 4 | 1 | qdrng 27600 | . . 3 ⊢ 𝑄 ∈ DivRing |
| 5 | 1 | qrngbas 27599 | . . . 4 ⊢ ℚ = (Base‘𝑄) |
| 6 | 1 | qrng0 27601 | . . . 4 ⊢ 0 = (0g‘𝑄) |
| 7 | ostth.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) | |
| 8 | 2, 5, 6, 7 | abvtriv 20803 | . . 3 ⊢ (𝑄 ∈ DivRing → 𝐾 ∈ 𝐴) |
| 9 | 4, 8 | mp1i 13 | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
| 10 | ostth1.3 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) | |
| 11 | 10 | r19.21bi 3237 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ (𝐹‘𝑛) < 1) |
| 12 | prmnn 16693 | . . . . 5 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
| 13 | ostth1.2 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) | |
| 14 | 13 | r19.21bi 3237 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ 1 < (𝐹‘𝑛)) |
| 15 | 12, 14 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ 1 < (𝐹‘𝑛)) |
| 16 | nnq 12986 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℚ) | |
| 17 | 12, 16 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℚ) |
| 18 | 2, 5 | abvcl 20785 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ) → (𝐹‘𝑛) ∈ ℝ) |
| 19 | 3, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) ∈ ℝ) |
| 20 | 1re 11243 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | lttri3 11326 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) |
| 23 | 11, 15, 22 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = 1) |
| 24 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℕ) |
| 25 | eqeq1 2738 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0)) | |
| 26 | 25 | ifbid 4529 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1)) |
| 27 | c0ex 11237 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 28 | 1ex 11239 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 29 | 27, 28 | ifex 4556 | . . . . . . 7 ⊢ if(𝑛 = 0, 0, 1) ∈ V |
| 30 | 26, 7, 29 | fvmpt 6996 | . . . . . 6 ⊢ (𝑛 ∈ ℚ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 31 | 16, 30 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 32 | nnne0 12282 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | |
| 33 | 32 | neneqd 2936 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ¬ 𝑛 = 0) |
| 34 | 33 | iffalsed 4516 | . . . . 5 ⊢ (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1) |
| 35 | 31, 34 | eqtrd 2769 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = 1) |
| 36 | 24, 35 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐾‘𝑛) = 1) |
| 37 | 23, 36 | eqtr4d 2772 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = (𝐾‘𝑛)) |
| 38 | 1, 2, 3, 9, 37 | ostthlem2 27608 | 1 ⊢ (𝜑 → 𝐹 = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ifcif 4505 class class class wbr 5123 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 ℝcr 11136 0cc0 11137 1c1 11138 < clt 11277 -cneg 11475 ℕcn 12248 ℚcq 12972 ↑cexp 14084 ℙcprime 16690 pCnt cpc 16856 ↾s cress 17252 DivRingcdr 20697 AbsValcabv 20777 ℂfldccnfld 21326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-sup 9464 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-ico 13375 df-fz 13530 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-dvds 16273 df-prm 16691 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-subg 19110 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 df-dvr 20369 df-nzr 20481 df-subrng 20514 df-subrg 20538 df-rlreg 20662 df-domn 20663 df-drng 20699 df-abv 20778 df-cnfld 21327 |
| This theorem is referenced by: ostth 27619 |
| Copyright terms: Public domain | W3C validator |