MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth1 Structured version   Visualization version   GIF version

Theorem ostth1 26217
Description: - Lemma for ostth 26223: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 19593 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 26211 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth1.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth1.3 (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹𝑛) < 1)
Assertion
Ref Expression
ostth1 (𝜑𝐹 = 𝐾)
Distinct variable groups:   𝑛,𝐾   𝑥,𝑛,𝑞,𝜑   𝐴,𝑛,𝑞,𝑥   𝑄,𝑛,𝑥   𝑛,𝐹,𝑞,𝑥
Allowed substitution hints:   𝑄(𝑞)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑞)

Proof of Theorem ostth1
StepHypRef Expression
1 qrng.q . 2 𝑄 = (ℂflds ℚ)
2 qabsabv.a . 2 𝐴 = (AbsVal‘𝑄)
3 ostth.1 . 2 (𝜑𝐹𝐴)
41qdrng 26204 . . 3 𝑄 ∈ DivRing
51qrngbas 26203 . . . 4 ℚ = (Base‘𝑄)
61qrng0 26205 . . . 4 0 = (0g𝑄)
7 ostth.k . . . 4 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
82, 5, 6, 7abvtriv 19605 . . 3 (𝑄 ∈ DivRing → 𝐾𝐴)
94, 8mp1i 13 . 2 (𝜑𝐾𝐴)
10 ostth1.3 . . . . 5 (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹𝑛) < 1)
1110r19.21bi 3173 . . . 4 ((𝜑𝑛 ∈ ℙ) → ¬ (𝐹𝑛) < 1)
12 prmnn 16008 . . . . 5 (𝑛 ∈ ℙ → 𝑛 ∈ ℕ)
13 ostth1.2 . . . . . 6 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
1413r19.21bi 3173 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ¬ 1 < (𝐹𝑛))
1512, 14sylan2 595 . . . 4 ((𝜑𝑛 ∈ ℙ) → ¬ 1 < (𝐹𝑛))
16 nnq 12349 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
1712, 16syl 17 . . . . . 6 (𝑛 ∈ ℙ → 𝑛 ∈ ℚ)
182, 5abvcl 19588 . . . . . 6 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
193, 17, 18syl2an 598 . . . . 5 ((𝜑𝑛 ∈ ℙ) → (𝐹𝑛) ∈ ℝ)
20 1re 10630 . . . . 5 1 ∈ ℝ
21 lttri3 10713 . . . . 5 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) = 1 ↔ (¬ (𝐹𝑛) < 1 ∧ ¬ 1 < (𝐹𝑛))))
2219, 20, 21sylancl 589 . . . 4 ((𝜑𝑛 ∈ ℙ) → ((𝐹𝑛) = 1 ↔ (¬ (𝐹𝑛) < 1 ∧ ¬ 1 < (𝐹𝑛))))
2311, 15, 22mpbir2and 712 . . 3 ((𝜑𝑛 ∈ ℙ) → (𝐹𝑛) = 1)
2412adantl 485 . . . 4 ((𝜑𝑛 ∈ ℙ) → 𝑛 ∈ ℕ)
25 eqeq1 2802 . . . . . . . 8 (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0))
2625ifbid 4447 . . . . . . 7 (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1))
27 c0ex 10624 . . . . . . . 8 0 ∈ V
28 1ex 10626 . . . . . . . 8 1 ∈ V
2927, 28ifex 4473 . . . . . . 7 if(𝑛 = 0, 0, 1) ∈ V
3026, 7, 29fvmpt 6745 . . . . . 6 (𝑛 ∈ ℚ → (𝐾𝑛) = if(𝑛 = 0, 0, 1))
3116, 30syl 17 . . . . 5 (𝑛 ∈ ℕ → (𝐾𝑛) = if(𝑛 = 0, 0, 1))
32 nnne0 11659 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
3332neneqd 2992 . . . . . 6 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
3433iffalsed 4436 . . . . 5 (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1)
3531, 34eqtrd 2833 . . . 4 (𝑛 ∈ ℕ → (𝐾𝑛) = 1)
3624, 35syl 17 . . 3 ((𝜑𝑛 ∈ ℙ) → (𝐾𝑛) = 1)
3723, 36eqtr4d 2836 . 2 ((𝜑𝑛 ∈ ℙ) → (𝐹𝑛) = (𝐾𝑛))
381, 2, 3, 9, 37ostthlem2 26212 1 (𝜑𝐹 = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664  -cneg 10860  cn 11625  cq 12336  cexp 13425  cprime 16005   pCnt cpc 16163  s cress 16476  DivRingcdr 19495  AbsValcabv 19580  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-ico 12732  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-prm 16006  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-subg 18268  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-abv 19581  df-cnfld 20092
This theorem is referenced by:  ostth  26223
  Copyright terms: Public domain W3C validator