![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version GIF version |
Description: - Lemma for ostth 27703: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20846 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27691 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
ostth.k | ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
ostth.1 | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
ostth1.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
ostth1.3 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) |
Ref | Expression |
---|---|
ostth1 | ⊢ (𝜑 → 𝐹 = 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
2 | qabsabv.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑄) | |
3 | ostth.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
4 | 1 | qdrng 27684 | . . 3 ⊢ 𝑄 ∈ DivRing |
5 | 1 | qrngbas 27683 | . . . 4 ⊢ ℚ = (Base‘𝑄) |
6 | 1 | qrng0 27685 | . . . 4 ⊢ 0 = (0g‘𝑄) |
7 | ostth.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) | |
8 | 2, 5, 6, 7 | abvtriv 20859 | . . 3 ⊢ (𝑄 ∈ DivRing → 𝐾 ∈ 𝐴) |
9 | 4, 8 | mp1i 13 | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
10 | ostth1.3 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) | |
11 | 10 | r19.21bi 3257 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ (𝐹‘𝑛) < 1) |
12 | prmnn 16723 | . . . . 5 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
13 | ostth1.2 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) | |
14 | 13 | r19.21bi 3257 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ 1 < (𝐹‘𝑛)) |
15 | 12, 14 | sylan2 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ 1 < (𝐹‘𝑛)) |
16 | nnq 13029 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℚ) | |
17 | 12, 16 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℚ) |
18 | 2, 5 | abvcl 20841 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ) → (𝐹‘𝑛) ∈ ℝ) |
19 | 3, 17, 18 | syl2an 595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) ∈ ℝ) |
20 | 1re 11292 | . . . . 5 ⊢ 1 ∈ ℝ | |
21 | lttri3 11375 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) | |
22 | 19, 20, 21 | sylancl 585 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) |
23 | 11, 15, 22 | mpbir2and 712 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = 1) |
24 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℕ) |
25 | eqeq1 2744 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0)) | |
26 | 25 | ifbid 4571 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1)) |
27 | c0ex 11286 | . . . . . . . 8 ⊢ 0 ∈ V | |
28 | 1ex 11288 | . . . . . . . 8 ⊢ 1 ∈ V | |
29 | 27, 28 | ifex 4598 | . . . . . . 7 ⊢ if(𝑛 = 0, 0, 1) ∈ V |
30 | 26, 7, 29 | fvmpt 7031 | . . . . . 6 ⊢ (𝑛 ∈ ℚ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
31 | 16, 30 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
32 | nnne0 12329 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | |
33 | 32 | neneqd 2951 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ¬ 𝑛 = 0) |
34 | 33 | iffalsed 4559 | . . . . 5 ⊢ (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1) |
35 | 31, 34 | eqtrd 2780 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = 1) |
36 | 24, 35 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐾‘𝑛) = 1) |
37 | 23, 36 | eqtr4d 2783 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = (𝐾‘𝑛)) |
38 | 1, 2, 3, 9, 37 | ostthlem2 27692 | 1 ⊢ (𝜑 → 𝐹 = 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6575 (class class class)co 7450 ℝcr 11185 0cc0 11186 1c1 11187 < clt 11326 -cneg 11523 ℕcn 12295 ℚcq 13015 ↑cexp 14114 ℙcprime 16720 pCnt cpc 16885 ↾s cress 17289 DivRingcdr 20753 AbsValcabv 20833 ℂfldccnfld 21389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-addf 11265 ax-mulf 11266 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-sup 9513 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-ico 13415 df-fz 13570 df-seq 14055 df-exp 14115 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-dvds 16305 df-prm 16721 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-0g 17503 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-minusg 18979 df-subg 19165 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-cring 20265 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-dvr 20429 df-nzr 20541 df-subrng 20574 df-subrg 20599 df-rlreg 20718 df-domn 20719 df-drng 20755 df-abv 20834 df-cnfld 21390 |
This theorem is referenced by: ostth 27703 |
Copyright terms: Public domain | W3C validator |