| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version GIF version | ||
| Description: - Lemma for ostth 27572: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20731 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27560 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
| padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| ostth.k | ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| ostth.1 | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| ostth1.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
| ostth1.3 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) |
| Ref | Expression |
|---|---|
| ostth1 | ⊢ (𝜑 → 𝐹 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qrng.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 2 | qabsabv.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑄) | |
| 3 | ostth.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
| 4 | 1 | qdrng 27553 | . . 3 ⊢ 𝑄 ∈ DivRing |
| 5 | 1 | qrngbas 27552 | . . . 4 ⊢ ℚ = (Base‘𝑄) |
| 6 | 1 | qrng0 27554 | . . . 4 ⊢ 0 = (0g‘𝑄) |
| 7 | ostth.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) | |
| 8 | 2, 5, 6, 7 | abvtriv 20744 | . . 3 ⊢ (𝑄 ∈ DivRing → 𝐾 ∈ 𝐴) |
| 9 | 4, 8 | mp1i 13 | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
| 10 | ostth1.3 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) | |
| 11 | 10 | r19.21bi 3224 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ (𝐹‘𝑛) < 1) |
| 12 | prmnn 16580 | . . . . 5 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
| 13 | ostth1.2 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) | |
| 14 | 13 | r19.21bi 3224 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ 1 < (𝐹‘𝑛)) |
| 15 | 12, 14 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ 1 < (𝐹‘𝑛)) |
| 16 | nnq 12855 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℚ) | |
| 17 | 12, 16 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℚ) |
| 18 | 2, 5 | abvcl 20726 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ) → (𝐹‘𝑛) ∈ ℝ) |
| 19 | 3, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) ∈ ℝ) |
| 20 | 1re 11107 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | lttri3 11191 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) |
| 23 | 11, 15, 22 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = 1) |
| 24 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℕ) |
| 25 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0)) | |
| 26 | 25 | ifbid 4494 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1)) |
| 27 | c0ex 11101 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 28 | 1ex 11103 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 29 | 27, 28 | ifex 4521 | . . . . . . 7 ⊢ if(𝑛 = 0, 0, 1) ∈ V |
| 30 | 26, 7, 29 | fvmpt 6924 | . . . . . 6 ⊢ (𝑛 ∈ ℚ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 31 | 16, 30 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 32 | nnne0 12154 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | |
| 33 | 32 | neneqd 2933 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ¬ 𝑛 = 0) |
| 34 | 33 | iffalsed 4481 | . . . . 5 ⊢ (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1) |
| 35 | 31, 34 | eqtrd 2766 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = 1) |
| 36 | 24, 35 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐾‘𝑛) = 1) |
| 37 | 23, 36 | eqtr4d 2769 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = (𝐾‘𝑛)) |
| 38 | 1, 2, 3, 9, 37 | ostthlem2 27561 | 1 ⊢ (𝜑 → 𝐹 = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ifcif 4470 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 < clt 11141 -cneg 11340 ℕcn 12120 ℚcq 12841 ↑cexp 13963 ℙcprime 16577 pCnt cpc 16743 ↾s cress 17136 DivRingcdr 20639 AbsValcabv 20718 ℂfldccnfld 21286 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-addf 11080 ax-mulf 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-ico 13246 df-fz 13403 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-dvds 16159 df-prm 16578 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-subg 19031 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-dvr 20314 df-nzr 20423 df-subrng 20456 df-subrg 20480 df-rlreg 20604 df-domn 20605 df-drng 20641 df-abv 20719 df-cnfld 21287 |
| This theorem is referenced by: ostth 27572 |
| Copyright terms: Public domain | W3C validator |