| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version GIF version | ||
| Description: - Lemma for ostth 27556: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If 𝐹 is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20736 of the absolute value, 𝐹 is equal to 1 on all the integers, and ostthlem1 27544 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
| Ref | Expression |
|---|---|
| qrng.q | ⊢ 𝑄 = (ℂfld ↾s ℚ) |
| qabsabv.a | ⊢ 𝐴 = (AbsVal‘𝑄) |
| padic.j | ⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| ostth.k | ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| ostth.1 | ⊢ (𝜑 → 𝐹 ∈ 𝐴) |
| ostth1.2 | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
| ostth1.3 | ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) |
| Ref | Expression |
|---|---|
| ostth1 | ⊢ (𝜑 → 𝐹 = 𝐾) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qrng.q | . 2 ⊢ 𝑄 = (ℂfld ↾s ℚ) | |
| 2 | qabsabv.a | . 2 ⊢ 𝐴 = (AbsVal‘𝑄) | |
| 3 | ostth.1 | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝐴) | |
| 4 | 1 | qdrng 27537 | . . 3 ⊢ 𝑄 ∈ DivRing |
| 5 | 1 | qrngbas 27536 | . . . 4 ⊢ ℚ = (Base‘𝑄) |
| 6 | 1 | qrng0 27538 | . . . 4 ⊢ 0 = (0g‘𝑄) |
| 7 | ostth.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) | |
| 8 | 2, 5, 6, 7 | abvtriv 20749 | . . 3 ⊢ (𝑄 ∈ DivRing → 𝐾 ∈ 𝐴) |
| 9 | 4, 8 | mp1i 13 | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝐴) |
| 10 | ostth1.3 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ℙ ¬ (𝐹‘𝑛) < 1) | |
| 11 | 10 | r19.21bi 3230 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ (𝐹‘𝑛) < 1) |
| 12 | prmnn 16650 | . . . . 5 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℕ) | |
| 13 | ostth1.2 | . . . . . 6 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) | |
| 14 | 13 | r19.21bi 3230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ¬ 1 < (𝐹‘𝑛)) |
| 15 | 12, 14 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ¬ 1 < (𝐹‘𝑛)) |
| 16 | nnq 12927 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℚ) | |
| 17 | 12, 16 | syl 17 | . . . . . 6 ⊢ (𝑛 ∈ ℙ → 𝑛 ∈ ℚ) |
| 18 | 2, 5 | abvcl 20731 | . . . . . 6 ⊢ ((𝐹 ∈ 𝐴 ∧ 𝑛 ∈ ℚ) → (𝐹‘𝑛) ∈ ℝ) |
| 19 | 3, 17, 18 | syl2an 596 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) ∈ ℝ) |
| 20 | 1re 11180 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 21 | lttri3 11263 | . . . . 5 ⊢ (((𝐹‘𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) | |
| 22 | 19, 20, 21 | sylancl 586 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → ((𝐹‘𝑛) = 1 ↔ (¬ (𝐹‘𝑛) < 1 ∧ ¬ 1 < (𝐹‘𝑛)))) |
| 23 | 11, 15, 22 | mpbir2and 713 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = 1) |
| 24 | 12 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → 𝑛 ∈ ℕ) |
| 25 | eqeq1 2734 | . . . . . . . 8 ⊢ (𝑥 = 𝑛 → (𝑥 = 0 ↔ 𝑛 = 0)) | |
| 26 | 25 | ifbid 4514 | . . . . . . 7 ⊢ (𝑥 = 𝑛 → if(𝑥 = 0, 0, 1) = if(𝑛 = 0, 0, 1)) |
| 27 | c0ex 11174 | . . . . . . . 8 ⊢ 0 ∈ V | |
| 28 | 1ex 11176 | . . . . . . . 8 ⊢ 1 ∈ V | |
| 29 | 27, 28 | ifex 4541 | . . . . . . 7 ⊢ if(𝑛 = 0, 0, 1) ∈ V |
| 30 | 26, 7, 29 | fvmpt 6970 | . . . . . 6 ⊢ (𝑛 ∈ ℚ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 31 | 16, 30 | syl 17 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = if(𝑛 = 0, 0, 1)) |
| 32 | nnne0 12221 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) | |
| 33 | 32 | neneqd 2931 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ¬ 𝑛 = 0) |
| 34 | 33 | iffalsed 4501 | . . . . 5 ⊢ (𝑛 ∈ ℕ → if(𝑛 = 0, 0, 1) = 1) |
| 35 | 31, 34 | eqtrd 2765 | . . . 4 ⊢ (𝑛 ∈ ℕ → (𝐾‘𝑛) = 1) |
| 36 | 24, 35 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐾‘𝑛) = 1) |
| 37 | 23, 36 | eqtr4d 2768 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℙ) → (𝐹‘𝑛) = (𝐾‘𝑛)) |
| 38 | 1, 2, 3, 9, 37 | ostthlem2 27545 | 1 ⊢ (𝜑 → 𝐹 = 𝐾) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ifcif 4490 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ℝcr 11073 0cc0 11074 1c1 11075 < clt 11214 -cneg 11412 ℕcn 12187 ℚcq 12913 ↑cexp 14032 ℙcprime 16647 pCnt cpc 16813 ↾s cress 17206 DivRingcdr 20644 AbsValcabv 20723 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-ico 13318 df-fz 13475 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 df-prm 16648 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-nzr 20428 df-subrng 20461 df-subrg 20485 df-rlreg 20609 df-domn 20610 df-drng 20646 df-abv 20724 df-cnfld 21271 |
| This theorem is referenced by: ostth 27556 |
| Copyright terms: Public domain | W3C validator |