![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ostth1 | Structured version Visualization version GIF version |
Description: - Lemma for ostth 27139: trivial case. (Not that the proof is trivial, but that we are proving that the function is trivial.) If πΉ is equal to 1 on the primes, then by complete induction and the multiplicative property abvmul 20436 of the absolute value, πΉ is equal to 1 on all the integers, and ostthlem1 27127 extends this to the other rational numbers. (Contributed by Mario Carneiro, 10-Sep-2014.) |
Ref | Expression |
---|---|
qrng.q | β’ π = (βfld βΎs β) |
qabsabv.a | β’ π΄ = (AbsValβπ) |
padic.j | β’ π½ = (π β β β¦ (π₯ β β β¦ if(π₯ = 0, 0, (πβ-(π pCnt π₯))))) |
ostth.k | β’ πΎ = (π₯ β β β¦ if(π₯ = 0, 0, 1)) |
ostth.1 | β’ (π β πΉ β π΄) |
ostth1.2 | β’ (π β βπ β β Β¬ 1 < (πΉβπ)) |
ostth1.3 | β’ (π β βπ β β Β¬ (πΉβπ) < 1) |
Ref | Expression |
---|---|
ostth1 | β’ (π β πΉ = πΎ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qrng.q | . 2 β’ π = (βfld βΎs β) | |
2 | qabsabv.a | . 2 β’ π΄ = (AbsValβπ) | |
3 | ostth.1 | . 2 β’ (π β πΉ β π΄) | |
4 | 1 | qdrng 27120 | . . 3 β’ π β DivRing |
5 | 1 | qrngbas 27119 | . . . 4 β’ β = (Baseβπ) |
6 | 1 | qrng0 27121 | . . . 4 β’ 0 = (0gβπ) |
7 | ostth.k | . . . 4 β’ πΎ = (π₯ β β β¦ if(π₯ = 0, 0, 1)) | |
8 | 2, 5, 6, 7 | abvtriv 20448 | . . 3 β’ (π β DivRing β πΎ β π΄) |
9 | 4, 8 | mp1i 13 | . 2 β’ (π β πΎ β π΄) |
10 | ostth1.3 | . . . . 5 β’ (π β βπ β β Β¬ (πΉβπ) < 1) | |
11 | 10 | r19.21bi 3248 | . . . 4 β’ ((π β§ π β β) β Β¬ (πΉβπ) < 1) |
12 | prmnn 16610 | . . . . 5 β’ (π β β β π β β) | |
13 | ostth1.2 | . . . . . 6 β’ (π β βπ β β Β¬ 1 < (πΉβπ)) | |
14 | 13 | r19.21bi 3248 | . . . . 5 β’ ((π β§ π β β) β Β¬ 1 < (πΉβπ)) |
15 | 12, 14 | sylan2 593 | . . . 4 β’ ((π β§ π β β) β Β¬ 1 < (πΉβπ)) |
16 | nnq 12945 | . . . . . . 7 β’ (π β β β π β β) | |
17 | 12, 16 | syl 17 | . . . . . 6 β’ (π β β β π β β) |
18 | 2, 5 | abvcl 20431 | . . . . . 6 β’ ((πΉ β π΄ β§ π β β) β (πΉβπ) β β) |
19 | 3, 17, 18 | syl2an 596 | . . . . 5 β’ ((π β§ π β β) β (πΉβπ) β β) |
20 | 1re 11213 | . . . . 5 β’ 1 β β | |
21 | lttri3 11296 | . . . . 5 β’ (((πΉβπ) β β β§ 1 β β) β ((πΉβπ) = 1 β (Β¬ (πΉβπ) < 1 β§ Β¬ 1 < (πΉβπ)))) | |
22 | 19, 20, 21 | sylancl 586 | . . . 4 β’ ((π β§ π β β) β ((πΉβπ) = 1 β (Β¬ (πΉβπ) < 1 β§ Β¬ 1 < (πΉβπ)))) |
23 | 11, 15, 22 | mpbir2and 711 | . . 3 β’ ((π β§ π β β) β (πΉβπ) = 1) |
24 | 12 | adantl 482 | . . . 4 β’ ((π β§ π β β) β π β β) |
25 | eqeq1 2736 | . . . . . . . 8 β’ (π₯ = π β (π₯ = 0 β π = 0)) | |
26 | 25 | ifbid 4551 | . . . . . . 7 β’ (π₯ = π β if(π₯ = 0, 0, 1) = if(π = 0, 0, 1)) |
27 | c0ex 11207 | . . . . . . . 8 β’ 0 β V | |
28 | 1ex 11209 | . . . . . . . 8 β’ 1 β V | |
29 | 27, 28 | ifex 4578 | . . . . . . 7 β’ if(π = 0, 0, 1) β V |
30 | 26, 7, 29 | fvmpt 6998 | . . . . . 6 β’ (π β β β (πΎβπ) = if(π = 0, 0, 1)) |
31 | 16, 30 | syl 17 | . . . . 5 β’ (π β β β (πΎβπ) = if(π = 0, 0, 1)) |
32 | nnne0 12245 | . . . . . . 7 β’ (π β β β π β 0) | |
33 | 32 | neneqd 2945 | . . . . . 6 β’ (π β β β Β¬ π = 0) |
34 | 33 | iffalsed 4539 | . . . . 5 β’ (π β β β if(π = 0, 0, 1) = 1) |
35 | 31, 34 | eqtrd 2772 | . . . 4 β’ (π β β β (πΎβπ) = 1) |
36 | 24, 35 | syl 17 | . . 3 β’ ((π β§ π β β) β (πΎβπ) = 1) |
37 | 23, 36 | eqtr4d 2775 | . 2 β’ ((π β§ π β β) β (πΉβπ) = (πΎβπ)) |
38 | 1, 2, 3, 9, 37 | ostthlem2 27128 | 1 β’ (π β πΉ = πΎ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 ifcif 4528 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 (class class class)co 7408 βcr 11108 0cc0 11109 1c1 11110 < clt 11247 -cneg 11444 βcn 12211 βcq 12931 βcexp 14026 βcprime 16607 pCnt cpc 16768 βΎs cress 17172 DivRingcdr 20356 AbsValcabv 20423 βfldccnfld 20943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-q 12932 df-rp 12974 df-ico 13329 df-fz 13484 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-dvds 16197 df-prm 16608 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-subg 19002 df-cmn 19649 df-mgp 19987 df-ur 20004 df-ring 20057 df-cring 20058 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-dvr 20214 df-subrg 20316 df-drng 20358 df-abv 20424 df-cnfld 20944 |
This theorem is referenced by: ostth 27139 |
Copyright terms: Public domain | W3C validator |