Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfplem4 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 9795. (Contributed by NM, 5-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem4 | ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8236 | . . . . 5 ⊢ (rec(ℵ, ω) ↾ ω) Fn ω | |
2 | alephfplem.1 | . . . . . 6 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
3 | 2 | fneq1i 6514 | . . . . 5 ⊢ (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝐻 Fn ω |
5 | 2 | alephfplem3 9793 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝐻‘𝑧) ∈ ran ℵ) |
6 | 5 | rgen 3073 | . . . 4 ⊢ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
7 | ffnfv 6974 | . . . 4 ⊢ (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ)) | |
8 | 4, 6, 7 | mpbir2an 707 | . . 3 ⊢ 𝐻:ω⟶ran ℵ |
9 | ssun2 4103 | . . 3 ⊢ ran ℵ ⊆ (ω ∪ ran ℵ) | |
10 | fss 6601 | . . 3 ⊢ ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ)) | |
11 | 8, 9, 10 | mp2an 688 | . 2 ⊢ 𝐻:ω⟶(ω ∪ ran ℵ) |
12 | peano1 7710 | . . 3 ⊢ ∅ ∈ ω | |
13 | 2 | alephfplem1 9791 | . . 3 ⊢ (𝐻‘∅) ∈ ran ℵ |
14 | fveq2 6756 | . . . . 5 ⊢ (𝑧 = ∅ → (𝐻‘𝑧) = (𝐻‘∅)) | |
15 | 14 | eleq1d 2823 | . . . 4 ⊢ (𝑧 = ∅ → ((𝐻‘𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
16 | 15 | rspcev 3552 | . . 3 ⊢ ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) |
17 | 12, 13, 16 | mp2an 688 | . 2 ⊢ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
18 | omex 9331 | . . 3 ⊢ ω ∈ V | |
19 | cardinfima 9784 | . . 3 ⊢ (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ)) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ) |
21 | 11, 17, 20 | mp2an 688 | 1 ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ran crn 5581 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ωcom 7687 reccrdg 8211 ℵcale 9625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-oi 9199 df-har 9246 df-card 9628 df-aleph 9629 |
This theorem is referenced by: alephfp 9795 alephfp2 9796 |
Copyright terms: Public domain | W3C validator |