Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfplem4 Structured version   Visualization version   GIF version

Theorem alephfplem4 9567
 Description: Lemma for alephfp 9568. (Contributed by NM, 5-Nov-2004.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfplem4 (𝐻 “ ω) ∈ ran ℵ

Proof of Theorem alephfplem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8080 . . . . 5 (rec(ℵ, ω) ↾ ω) Fn ω
2 alephfplem.1 . . . . . 6 𝐻 = (rec(ℵ, ω) ↾ ω)
32fneq1i 6431 . . . . 5 (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω)
41, 3mpbir 234 . . . 4 𝐻 Fn ω
52alephfplem3 9566 . . . . 5 (𝑧 ∈ ω → (𝐻𝑧) ∈ ran ℵ)
65rgen 3080 . . . 4 𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ
7 ffnfv 6873 . . . 4 (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ))
84, 6, 7mpbir2an 710 . . 3 𝐻:ω⟶ran ℵ
9 ssun2 4078 . . 3 ran ℵ ⊆ (ω ∪ ran ℵ)
10 fss 6512 . . 3 ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ))
118, 9, 10mp2an 691 . 2 𝐻:ω⟶(ω ∪ ran ℵ)
12 peano1 7600 . . 3 ∅ ∈ ω
132alephfplem1 9564 . . 3 (𝐻‘∅) ∈ ran ℵ
14 fveq2 6658 . . . . 5 (𝑧 = ∅ → (𝐻𝑧) = (𝐻‘∅))
1514eleq1d 2836 . . . 4 (𝑧 = ∅ → ((𝐻𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ))
1615rspcev 3541 . . 3 ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ)
1712, 13, 16mp2an 691 . 2 𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ
18 omex 9139 . . 3 ω ∈ V
19 cardinfima 9557 . . 3 (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ) → (𝐻 “ ω) ∈ ran ℵ))
2018, 19ax-mp 5 . 2 ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ) → (𝐻 “ ω) ∈ ran ℵ)
2111, 17, 20mp2an 691 1 (𝐻 “ ω) ∈ ran ℵ
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071  Vcvv 3409   ∪ cun 3856   ⊆ wss 3858  ∅c0 4225  ∪ cuni 4798  ran crn 5525   ↾ cres 5526   “ cima 5527   Fn wfn 6330  ⟶wf 6331  ‘cfv 6335  ωcom 7579  reccrdg 8055  ℵcale 9398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-inf2 9137 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-se 5484  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-isom 6344  df-riota 7108  df-om 7580  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-fin 8531  df-oi 9007  df-har 9054  df-card 9401  df-aleph 9402 This theorem is referenced by:  alephfp  9568  alephfp2  9569
 Copyright terms: Public domain W3C validator