MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfplem4 Structured version   Visualization version   GIF version

Theorem alephfplem4 10148
Description: Lemma for alephfp 10149. (Contributed by NM, 5-Nov-2004.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfplem4 (𝐻 “ ω) ∈ ran ℵ

Proof of Theorem alephfplem4
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 frfnom 8476 . . . . 5 (rec(ℵ, ω) ↾ ω) Fn ω
2 alephfplem.1 . . . . . 6 𝐻 = (rec(ℵ, ω) ↾ ω)
32fneq1i 6664 . . . . 5 (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω)
41, 3mpbir 231 . . . 4 𝐻 Fn ω
52alephfplem3 10147 . . . . 5 (𝑧 ∈ ω → (𝐻𝑧) ∈ ran ℵ)
65rgen 3062 . . . 4 𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ
7 ffnfv 7138 . . . 4 (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ))
84, 6, 7mpbir2an 711 . . 3 𝐻:ω⟶ran ℵ
9 ssun2 4178 . . 3 ran ℵ ⊆ (ω ∪ ran ℵ)
10 fss 6751 . . 3 ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ))
118, 9, 10mp2an 692 . 2 𝐻:ω⟶(ω ∪ ran ℵ)
12 peano1 7911 . . 3 ∅ ∈ ω
132alephfplem1 10145 . . 3 (𝐻‘∅) ∈ ran ℵ
14 fveq2 6905 . . . . 5 (𝑧 = ∅ → (𝐻𝑧) = (𝐻‘∅))
1514eleq1d 2825 . . . 4 (𝑧 = ∅ → ((𝐻𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ))
1615rspcev 3621 . . 3 ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ)
1712, 13, 16mp2an 692 . 2 𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ
18 omex 9684 . . 3 ω ∈ V
19 cardinfima 10138 . . 3 (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ) → (𝐻 “ ω) ∈ ran ℵ))
2018, 19ax-mp 5 . 2 ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻𝑧) ∈ ran ℵ) → (𝐻 “ ω) ∈ ran ℵ)
2111, 17, 20mp2an 692 1 (𝐻 “ ω) ∈ ran ℵ
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  cun 3948  wss 3950  c0 4332   cuni 4906  ran crn 5685  cres 5686  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  ωcom 7888  reccrdg 8450  cale 9977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-oi 9551  df-har 9598  df-card 9980  df-aleph 9981
This theorem is referenced by:  alephfp  10149  alephfp2  10150
  Copyright terms: Public domain W3C validator