| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for alephfp 10127. (Contributed by NM, 5-Nov-2004.) |
| Ref | Expression |
|---|---|
| alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
| Ref | Expression |
|---|---|
| alephfplem4 | ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8454 | . . . . 5 ⊢ (rec(ℵ, ω) ↾ ω) Fn ω | |
| 2 | alephfplem.1 | . . . . . 6 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
| 3 | 2 | fneq1i 6640 | . . . . 5 ⊢ (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . 4 ⊢ 𝐻 Fn ω |
| 5 | 2 | alephfplem3 10125 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝐻‘𝑧) ∈ ran ℵ) |
| 6 | 5 | rgen 3054 | . . . 4 ⊢ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
| 7 | ffnfv 7114 | . . . 4 ⊢ (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ)) | |
| 8 | 4, 6, 7 | mpbir2an 711 | . . 3 ⊢ 𝐻:ω⟶ran ℵ |
| 9 | ssun2 4159 | . . 3 ⊢ ran ℵ ⊆ (ω ∪ ran ℵ) | |
| 10 | fss 6727 | . . 3 ⊢ ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ)) | |
| 11 | 8, 9, 10 | mp2an 692 | . 2 ⊢ 𝐻:ω⟶(ω ∪ ran ℵ) |
| 12 | peano1 7889 | . . 3 ⊢ ∅ ∈ ω | |
| 13 | 2 | alephfplem1 10123 | . . 3 ⊢ (𝐻‘∅) ∈ ran ℵ |
| 14 | fveq2 6881 | . . . . 5 ⊢ (𝑧 = ∅ → (𝐻‘𝑧) = (𝐻‘∅)) | |
| 15 | 14 | eleq1d 2820 | . . . 4 ⊢ (𝑧 = ∅ → ((𝐻‘𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
| 16 | 15 | rspcev 3606 | . . 3 ⊢ ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) |
| 17 | 12, 13, 16 | mp2an 692 | . 2 ⊢ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
| 18 | omex 9662 | . . 3 ⊢ ω ∈ V | |
| 19 | cardinfima 10116 | . . 3 ⊢ (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ)) | |
| 20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ) |
| 21 | 11, 17, 20 | mp2an 692 | 1 ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 Vcvv 3464 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ran crn 5660 ↾ cres 5661 “ cima 5662 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 ωcom 7866 reccrdg 8428 ℵcale 9955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-har 9576 df-card 9958 df-aleph 9959 |
| This theorem is referenced by: alephfp 10127 alephfp2 10128 |
| Copyright terms: Public domain | W3C validator |