Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfplem4 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 9568. (Contributed by NM, 5-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem4 | ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8080 | . . . . 5 ⊢ (rec(ℵ, ω) ↾ ω) Fn ω | |
2 | alephfplem.1 | . . . . . 6 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
3 | 2 | fneq1i 6431 | . . . . 5 ⊢ (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 234 | . . . 4 ⊢ 𝐻 Fn ω |
5 | 2 | alephfplem3 9566 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝐻‘𝑧) ∈ ran ℵ) |
6 | 5 | rgen 3080 | . . . 4 ⊢ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
7 | ffnfv 6873 | . . . 4 ⊢ (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ)) | |
8 | 4, 6, 7 | mpbir2an 710 | . . 3 ⊢ 𝐻:ω⟶ran ℵ |
9 | ssun2 4078 | . . 3 ⊢ ran ℵ ⊆ (ω ∪ ran ℵ) | |
10 | fss 6512 | . . 3 ⊢ ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ)) | |
11 | 8, 9, 10 | mp2an 691 | . 2 ⊢ 𝐻:ω⟶(ω ∪ ran ℵ) |
12 | peano1 7600 | . . 3 ⊢ ∅ ∈ ω | |
13 | 2 | alephfplem1 9564 | . . 3 ⊢ (𝐻‘∅) ∈ ran ℵ |
14 | fveq2 6658 | . . . . 5 ⊢ (𝑧 = ∅ → (𝐻‘𝑧) = (𝐻‘∅)) | |
15 | 14 | eleq1d 2836 | . . . 4 ⊢ (𝑧 = ∅ → ((𝐻‘𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
16 | 15 | rspcev 3541 | . . 3 ⊢ ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) |
17 | 12, 13, 16 | mp2an 691 | . 2 ⊢ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
18 | omex 9139 | . . 3 ⊢ ω ∈ V | |
19 | cardinfima 9557 | . . 3 ⊢ (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ)) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ) |
21 | 11, 17, 20 | mp2an 691 | 1 ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 Vcvv 3409 ∪ cun 3856 ⊆ wss 3858 ∅c0 4225 ∪ cuni 4798 ran crn 5525 ↾ cres 5526 “ cima 5527 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 ωcom 7579 reccrdg 8055 ℵcale 9398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-oi 9007 df-har 9054 df-card 9401 df-aleph 9402 |
This theorem is referenced by: alephfp 9568 alephfp2 9569 |
Copyright terms: Public domain | W3C validator |