| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfplem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for alephfp 10021. (Contributed by NM, 5-Nov-2004.) |
| Ref | Expression |
|---|---|
| alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
| Ref | Expression |
|---|---|
| alephfplem4 | ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8364 | . . . . 5 ⊢ (rec(ℵ, ω) ↾ ω) Fn ω | |
| 2 | alephfplem.1 | . . . . . 6 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
| 3 | 2 | fneq1i 6583 | . . . . 5 ⊢ (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . . 4 ⊢ 𝐻 Fn ω |
| 5 | 2 | alephfplem3 10019 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝐻‘𝑧) ∈ ran ℵ) |
| 6 | 5 | rgen 3046 | . . . 4 ⊢ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
| 7 | ffnfv 7057 | . . . 4 ⊢ (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ)) | |
| 8 | 4, 6, 7 | mpbir2an 711 | . . 3 ⊢ 𝐻:ω⟶ran ℵ |
| 9 | ssun2 4132 | . . 3 ⊢ ran ℵ ⊆ (ω ∪ ran ℵ) | |
| 10 | fss 6672 | . . 3 ⊢ ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ)) | |
| 11 | 8, 9, 10 | mp2an 692 | . 2 ⊢ 𝐻:ω⟶(ω ∪ ran ℵ) |
| 12 | peano1 7829 | . . 3 ⊢ ∅ ∈ ω | |
| 13 | 2 | alephfplem1 10017 | . . 3 ⊢ (𝐻‘∅) ∈ ran ℵ |
| 14 | fveq2 6826 | . . . . 5 ⊢ (𝑧 = ∅ → (𝐻‘𝑧) = (𝐻‘∅)) | |
| 15 | 14 | eleq1d 2813 | . . . 4 ⊢ (𝑧 = ∅ → ((𝐻‘𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
| 16 | 15 | rspcev 3579 | . . 3 ⊢ ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) |
| 17 | 12, 13, 16 | mp2an 692 | . 2 ⊢ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
| 18 | omex 9558 | . . 3 ⊢ ω ∈ V | |
| 19 | cardinfima 10010 | . . 3 ⊢ (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ)) | |
| 20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ) |
| 21 | 11, 17, 20 | mp2an 692 | 1 ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ∪ cun 3903 ⊆ wss 3905 ∅c0 4286 ∪ cuni 4861 ran crn 5624 ↾ cres 5625 “ cima 5626 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 ωcom 7806 reccrdg 8338 ℵcale 9851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-har 9468 df-card 9854 df-aleph 9855 |
| This theorem is referenced by: alephfp 10021 alephfp2 10022 |
| Copyright terms: Public domain | W3C validator |