Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfplem4 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 9864. (Contributed by NM, 5-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem4 | ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frfnom 8266 | . . . . 5 ⊢ (rec(ℵ, ω) ↾ ω) Fn ω | |
2 | alephfplem.1 | . . . . . 6 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
3 | 2 | fneq1i 6530 | . . . . 5 ⊢ (𝐻 Fn ω ↔ (rec(ℵ, ω) ↾ ω) Fn ω) |
4 | 1, 3 | mpbir 230 | . . . 4 ⊢ 𝐻 Fn ω |
5 | 2 | alephfplem3 9862 | . . . . 5 ⊢ (𝑧 ∈ ω → (𝐻‘𝑧) ∈ ran ℵ) |
6 | 5 | rgen 3074 | . . . 4 ⊢ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
7 | ffnfv 6992 | . . . 4 ⊢ (𝐻:ω⟶ran ℵ ↔ (𝐻 Fn ω ∧ ∀𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ)) | |
8 | 4, 6, 7 | mpbir2an 708 | . . 3 ⊢ 𝐻:ω⟶ran ℵ |
9 | ssun2 4107 | . . 3 ⊢ ran ℵ ⊆ (ω ∪ ran ℵ) | |
10 | fss 6617 | . . 3 ⊢ ((𝐻:ω⟶ran ℵ ∧ ran ℵ ⊆ (ω ∪ ran ℵ)) → 𝐻:ω⟶(ω ∪ ran ℵ)) | |
11 | 8, 9, 10 | mp2an 689 | . 2 ⊢ 𝐻:ω⟶(ω ∪ ran ℵ) |
12 | peano1 7735 | . . 3 ⊢ ∅ ∈ ω | |
13 | 2 | alephfplem1 9860 | . . 3 ⊢ (𝐻‘∅) ∈ ran ℵ |
14 | fveq2 6774 | . . . . 5 ⊢ (𝑧 = ∅ → (𝐻‘𝑧) = (𝐻‘∅)) | |
15 | 14 | eleq1d 2823 | . . . 4 ⊢ (𝑧 = ∅ → ((𝐻‘𝑧) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
16 | 15 | rspcev 3561 | . . 3 ⊢ ((∅ ∈ ω ∧ (𝐻‘∅) ∈ ran ℵ) → ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) |
17 | 12, 13, 16 | mp2an 689 | . 2 ⊢ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ |
18 | omex 9401 | . . 3 ⊢ ω ∈ V | |
19 | cardinfima 9853 | . . 3 ⊢ (ω ∈ V → ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ)) | |
20 | 18, 19 | ax-mp 5 | . 2 ⊢ ((𝐻:ω⟶(ω ∪ ran ℵ) ∧ ∃𝑧 ∈ ω (𝐻‘𝑧) ∈ ran ℵ) → ∪ (𝐻 “ ω) ∈ ran ℵ) |
21 | 11, 17, 20 | mp2an 689 | 1 ⊢ ∪ (𝐻 “ ω) ∈ ran ℵ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ran crn 5590 ↾ cres 5591 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 ωcom 7712 reccrdg 8240 ℵcale 9694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-card 9697 df-aleph 9698 |
This theorem is referenced by: alephfp 9864 alephfp2 9865 |
Copyright terms: Public domain | W3C validator |