Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmulneg Structured version   Visualization version   GIF version

Theorem ltmulneg 41040
Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltmulneg.a (𝜑𝐴 ∈ ℝ)
ltmulneg.b (𝜑𝐵 ∈ ℝ)
ltmulneg.c (𝜑𝐶 ∈ ℝ)
ltmulneg.n (𝜑𝐶 < 0)
Assertion
Ref Expression
ltmulneg (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))

Proof of Theorem ltmulneg
StepHypRef Expression
1 ltmulneg.a . . 3 (𝜑𝐴 ∈ ℝ)
2 ltmulneg.b . . 3 (𝜑𝐵 ∈ ℝ)
3 ltmulneg.c . . . 4 (𝜑𝐶 ∈ ℝ)
4 ltmulneg.n . . . 4 (𝜑𝐶 < 0)
53, 4negelrpd 12233 . . 3 (𝜑 → -𝐶 ∈ ℝ+)
61, 2, 5ltmul1d 12282 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · -𝐶) < (𝐵 · -𝐶)))
73renegcld 10860 . . . 4 (𝜑 → -𝐶 ∈ ℝ)
81, 7remulcld 10462 . . 3 (𝜑 → (𝐴 · -𝐶) ∈ ℝ)
92, 7remulcld 10462 . . 3 (𝜑 → (𝐵 · -𝐶) ∈ ℝ)
108, 9ltnegd 11011 . 2 (𝜑 → ((𝐴 · -𝐶) < (𝐵 · -𝐶) ↔ -(𝐵 · -𝐶) < -(𝐴 · -𝐶)))
112recnd 10460 . . . . 5 (𝜑𝐵 ∈ ℂ)
127recnd 10460 . . . . 5 (𝜑 → -𝐶 ∈ ℂ)
1311, 12mulneg2d 10887 . . . 4 (𝜑 → (𝐵 · --𝐶) = -(𝐵 · -𝐶))
143recnd 10460 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1514negnegd 10781 . . . . 5 (𝜑 → --𝐶 = 𝐶)
1615oveq2d 6986 . . . 4 (𝜑 → (𝐵 · --𝐶) = (𝐵 · 𝐶))
1713, 16eqtr3d 2810 . . 3 (𝜑 → -(𝐵 · -𝐶) = (𝐵 · 𝐶))
181recnd 10460 . . . . 5 (𝜑𝐴 ∈ ℂ)
1918, 12mulneg2d 10887 . . . 4 (𝜑 → (𝐴 · --𝐶) = -(𝐴 · -𝐶))
2015oveq2d 6986 . . . 4 (𝜑 → (𝐴 · --𝐶) = (𝐴 · 𝐶))
2119, 20eqtr3d 2810 . . 3 (𝜑 → -(𝐴 · -𝐶) = (𝐴 · 𝐶))
2217, 21breq12d 4936 . 2 (𝜑 → (-(𝐵 · -𝐶) < -(𝐴 · -𝐶) ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
236, 10, 223bitrd 297 1 (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2048   class class class wbr 4923  (class class class)co 6970  cr 10326  0cc0 10327   · cmul 10332   < clt 10466  -cneg 10663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-po 5319  df-so 5320  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-rp 12198
This theorem is referenced by:  ltdiv23neg  41042
  Copyright terms: Public domain W3C validator