Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmulneg Structured version   Visualization version   GIF version

Theorem ltmulneg 45341
Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltmulneg.a (𝜑𝐴 ∈ ℝ)
ltmulneg.b (𝜑𝐵 ∈ ℝ)
ltmulneg.c (𝜑𝐶 ∈ ℝ)
ltmulneg.n (𝜑𝐶 < 0)
Assertion
Ref Expression
ltmulneg (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))

Proof of Theorem ltmulneg
StepHypRef Expression
1 ltmulneg.a . . 3 (𝜑𝐴 ∈ ℝ)
2 ltmulneg.b . . 3 (𝜑𝐵 ∈ ℝ)
3 ltmulneg.c . . . 4 (𝜑𝐶 ∈ ℝ)
4 ltmulneg.n . . . 4 (𝜑𝐶 < 0)
53, 4negelrpd 13066 . . 3 (𝜑 → -𝐶 ∈ ℝ+)
61, 2, 5ltmul1d 13115 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · -𝐶) < (𝐵 · -𝐶)))
73renegcld 11687 . . . 4 (𝜑 → -𝐶 ∈ ℝ)
81, 7remulcld 11288 . . 3 (𝜑 → (𝐴 · -𝐶) ∈ ℝ)
92, 7remulcld 11288 . . 3 (𝜑 → (𝐵 · -𝐶) ∈ ℝ)
108, 9ltnegd 11838 . 2 (𝜑 → ((𝐴 · -𝐶) < (𝐵 · -𝐶) ↔ -(𝐵 · -𝐶) < -(𝐴 · -𝐶)))
112recnd 11286 . . . . 5 (𝜑𝐵 ∈ ℂ)
127recnd 11286 . . . . 5 (𝜑 → -𝐶 ∈ ℂ)
1311, 12mulneg2d 11714 . . . 4 (𝜑 → (𝐵 · --𝐶) = -(𝐵 · -𝐶))
143recnd 11286 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1514negnegd 11608 . . . . 5 (𝜑 → --𝐶 = 𝐶)
1615oveq2d 7446 . . . 4 (𝜑 → (𝐵 · --𝐶) = (𝐵 · 𝐶))
1713, 16eqtr3d 2776 . . 3 (𝜑 → -(𝐵 · -𝐶) = (𝐵 · 𝐶))
181recnd 11286 . . . . 5 (𝜑𝐴 ∈ ℂ)
1918, 12mulneg2d 11714 . . . 4 (𝜑 → (𝐴 · --𝐶) = -(𝐴 · -𝐶))
2015oveq2d 7446 . . . 4 (𝜑 → (𝐴 · --𝐶) = (𝐴 · 𝐶))
2119, 20eqtr3d 2776 . . 3 (𝜑 → -(𝐴 · -𝐶) = (𝐴 · 𝐶))
2217, 21breq12d 5160 . 2 (𝜑 → (-(𝐵 · -𝐶) < -(𝐴 · -𝐶) ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
236, 10, 223bitrd 305 1 (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2105   class class class wbr 5147  (class class class)co 7430  cr 11151  0cc0 11152   · cmul 11157   < clt 11292  -cneg 11490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-rp 13032
This theorem is referenced by:  ltdiv23neg  45343
  Copyright terms: Public domain W3C validator