Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltmulneg Structured version   Visualization version   GIF version

Theorem ltmulneg 40403
Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
ltmulneg.a (𝜑𝐴 ∈ ℝ)
ltmulneg.b (𝜑𝐵 ∈ ℝ)
ltmulneg.c (𝜑𝐶 ∈ ℝ)
ltmulneg.n (𝜑𝐶 < 0)
Assertion
Ref Expression
ltmulneg (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))

Proof of Theorem ltmulneg
StepHypRef Expression
1 ltmulneg.a . . 3 (𝜑𝐴 ∈ ℝ)
2 ltmulneg.b . . 3 (𝜑𝐵 ∈ ℝ)
3 ltmulneg.c . . . 4 (𝜑𝐶 ∈ ℝ)
4 ltmulneg.n . . . 4 (𝜑𝐶 < 0)
53, 4negelrpd 12148 . . 3 (𝜑 → -𝐶 ∈ ℝ+)
61, 2, 5ltmul1d 12197 . 2 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · -𝐶) < (𝐵 · -𝐶)))
73renegcld 10781 . . . 4 (𝜑 → -𝐶 ∈ ℝ)
81, 7remulcld 10387 . . 3 (𝜑 → (𝐴 · -𝐶) ∈ ℝ)
92, 7remulcld 10387 . . 3 (𝜑 → (𝐵 · -𝐶) ∈ ℝ)
108, 9ltnegd 10930 . 2 (𝜑 → ((𝐴 · -𝐶) < (𝐵 · -𝐶) ↔ -(𝐵 · -𝐶) < -(𝐴 · -𝐶)))
112recnd 10385 . . . . 5 (𝜑𝐵 ∈ ℂ)
127recnd 10385 . . . . 5 (𝜑 → -𝐶 ∈ ℂ)
1311, 12mulneg2d 10808 . . . 4 (𝜑 → (𝐵 · --𝐶) = -(𝐵 · -𝐶))
143recnd 10385 . . . . . 6 (𝜑𝐶 ∈ ℂ)
1514negnegd 10704 . . . . 5 (𝜑 → --𝐶 = 𝐶)
1615oveq2d 6921 . . . 4 (𝜑 → (𝐵 · --𝐶) = (𝐵 · 𝐶))
1713, 16eqtr3d 2863 . . 3 (𝜑 → -(𝐵 · -𝐶) = (𝐵 · 𝐶))
181recnd 10385 . . . . 5 (𝜑𝐴 ∈ ℂ)
1918, 12mulneg2d 10808 . . . 4 (𝜑 → (𝐴 · --𝐶) = -(𝐴 · -𝐶))
2015oveq2d 6921 . . . 4 (𝜑 → (𝐴 · --𝐶) = (𝐴 · 𝐶))
2119, 20eqtr3d 2863 . . 3 (𝜑 → -(𝐴 · -𝐶) = (𝐴 · 𝐶))
2217, 21breq12d 4886 . 2 (𝜑 → (-(𝐵 · -𝐶) < -(𝐴 · -𝐶) ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
236, 10, 223bitrd 297 1 (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wcel 2164   class class class wbr 4873  (class class class)co 6905  cr 10251  0cc0 10252   · cmul 10257   < clt 10391  -cneg 10586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-po 5263  df-so 5264  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-rp 12113
This theorem is referenced by:  ltdiv23neg  40405
  Copyright terms: Public domain W3C validator