Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmulneg | Structured version Visualization version GIF version |
Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltmulneg.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmulneg.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmulneg.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltmulneg.n | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltmulneg | ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmulneg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmulneg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltmulneg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | ltmulneg.n | . . . 4 ⊢ (𝜑 → 𝐶 < 0) | |
5 | 3, 4 | negelrpd 12464 | . . 3 ⊢ (𝜑 → -𝐶 ∈ ℝ+) |
6 | 1, 2, 5 | ltmul1d 12513 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · -𝐶) < (𝐵 · -𝐶))) |
7 | 3 | renegcld 11105 | . . . 4 ⊢ (𝜑 → -𝐶 ∈ ℝ) |
8 | 1, 7 | remulcld 10709 | . . 3 ⊢ (𝜑 → (𝐴 · -𝐶) ∈ ℝ) |
9 | 2, 7 | remulcld 10709 | . . 3 ⊢ (𝜑 → (𝐵 · -𝐶) ∈ ℝ) |
10 | 8, 9 | ltnegd 11256 | . 2 ⊢ (𝜑 → ((𝐴 · -𝐶) < (𝐵 · -𝐶) ↔ -(𝐵 · -𝐶) < -(𝐴 · -𝐶))) |
11 | 2 | recnd 10707 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 7 | recnd 10707 | . . . . 5 ⊢ (𝜑 → -𝐶 ∈ ℂ) |
13 | 11, 12 | mulneg2d 11132 | . . . 4 ⊢ (𝜑 → (𝐵 · --𝐶) = -(𝐵 · -𝐶)) |
14 | 3 | recnd 10707 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
15 | 14 | negnegd 11026 | . . . . 5 ⊢ (𝜑 → --𝐶 = 𝐶) |
16 | 15 | oveq2d 7166 | . . . 4 ⊢ (𝜑 → (𝐵 · --𝐶) = (𝐵 · 𝐶)) |
17 | 13, 16 | eqtr3d 2795 | . . 3 ⊢ (𝜑 → -(𝐵 · -𝐶) = (𝐵 · 𝐶)) |
18 | 1 | recnd 10707 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18, 12 | mulneg2d 11132 | . . . 4 ⊢ (𝜑 → (𝐴 · --𝐶) = -(𝐴 · -𝐶)) |
20 | 15 | oveq2d 7166 | . . . 4 ⊢ (𝜑 → (𝐴 · --𝐶) = (𝐴 · 𝐶)) |
21 | 19, 20 | eqtr3d 2795 | . . 3 ⊢ (𝜑 → -(𝐴 · -𝐶) = (𝐴 · 𝐶)) |
22 | 17, 21 | breq12d 5045 | . 2 ⊢ (𝜑 → (-(𝐵 · -𝐶) < -(𝐴 · -𝐶) ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
23 | 6, 10, 22 | 3bitrd 308 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2111 class class class wbr 5032 (class class class)co 7150 ℝcr 10574 0cc0 10575 · cmul 10580 < clt 10713 -cneg 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-rp 12431 |
This theorem is referenced by: ltdiv23neg 42397 |
Copyright terms: Public domain | W3C validator |