Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmulneg | Structured version Visualization version GIF version |
Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltmulneg.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmulneg.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmulneg.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltmulneg.n | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltmulneg | ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmulneg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmulneg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltmulneg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | ltmulneg.n | . . . 4 ⊢ (𝜑 → 𝐶 < 0) | |
5 | 3, 4 | negelrpd 12746 | . . 3 ⊢ (𝜑 → -𝐶 ∈ ℝ+) |
6 | 1, 2, 5 | ltmul1d 12795 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · -𝐶) < (𝐵 · -𝐶))) |
7 | 3 | renegcld 11385 | . . . 4 ⊢ (𝜑 → -𝐶 ∈ ℝ) |
8 | 1, 7 | remulcld 10989 | . . 3 ⊢ (𝜑 → (𝐴 · -𝐶) ∈ ℝ) |
9 | 2, 7 | remulcld 10989 | . . 3 ⊢ (𝜑 → (𝐵 · -𝐶) ∈ ℝ) |
10 | 8, 9 | ltnegd 11536 | . 2 ⊢ (𝜑 → ((𝐴 · -𝐶) < (𝐵 · -𝐶) ↔ -(𝐵 · -𝐶) < -(𝐴 · -𝐶))) |
11 | 2 | recnd 10987 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 7 | recnd 10987 | . . . . 5 ⊢ (𝜑 → -𝐶 ∈ ℂ) |
13 | 11, 12 | mulneg2d 11412 | . . . 4 ⊢ (𝜑 → (𝐵 · --𝐶) = -(𝐵 · -𝐶)) |
14 | 3 | recnd 10987 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
15 | 14 | negnegd 11306 | . . . . 5 ⊢ (𝜑 → --𝐶 = 𝐶) |
16 | 15 | oveq2d 7284 | . . . 4 ⊢ (𝜑 → (𝐵 · --𝐶) = (𝐵 · 𝐶)) |
17 | 13, 16 | eqtr3d 2781 | . . 3 ⊢ (𝜑 → -(𝐵 · -𝐶) = (𝐵 · 𝐶)) |
18 | 1 | recnd 10987 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18, 12 | mulneg2d 11412 | . . . 4 ⊢ (𝜑 → (𝐴 · --𝐶) = -(𝐴 · -𝐶)) |
20 | 15 | oveq2d 7284 | . . . 4 ⊢ (𝜑 → (𝐴 · --𝐶) = (𝐴 · 𝐶)) |
21 | 19, 20 | eqtr3d 2781 | . . 3 ⊢ (𝜑 → -(𝐴 · -𝐶) = (𝐴 · 𝐶)) |
22 | 17, 21 | breq12d 5091 | . 2 ⊢ (𝜑 → (-(𝐵 · -𝐶) < -(𝐴 · -𝐶) ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
23 | 6, 10, 22 | 3bitrd 304 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2109 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 0cc0 10855 · cmul 10860 < clt 10993 -cneg 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-rp 12713 |
This theorem is referenced by: ltdiv23neg 42888 |
Copyright terms: Public domain | W3C validator |