![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ltmulneg | Structured version Visualization version GIF version |
Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ltmulneg.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltmulneg.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltmulneg.c | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
ltmulneg.n | ⊢ (𝜑 → 𝐶 < 0) |
Ref | Expression |
---|---|
ltmulneg | ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmulneg.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltmulneg.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | ltmulneg.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | ltmulneg.n | . . . 4 ⊢ (𝜑 → 𝐶 < 0) | |
5 | 3, 4 | negelrpd 13091 | . . 3 ⊢ (𝜑 → -𝐶 ∈ ℝ+) |
6 | 1, 2, 5 | ltmul1d 13140 | . 2 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 · -𝐶) < (𝐵 · -𝐶))) |
7 | 3 | renegcld 11717 | . . . 4 ⊢ (𝜑 → -𝐶 ∈ ℝ) |
8 | 1, 7 | remulcld 11320 | . . 3 ⊢ (𝜑 → (𝐴 · -𝐶) ∈ ℝ) |
9 | 2, 7 | remulcld 11320 | . . 3 ⊢ (𝜑 → (𝐵 · -𝐶) ∈ ℝ) |
10 | 8, 9 | ltnegd 11868 | . 2 ⊢ (𝜑 → ((𝐴 · -𝐶) < (𝐵 · -𝐶) ↔ -(𝐵 · -𝐶) < -(𝐴 · -𝐶))) |
11 | 2 | recnd 11318 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
12 | 7 | recnd 11318 | . . . . 5 ⊢ (𝜑 → -𝐶 ∈ ℂ) |
13 | 11, 12 | mulneg2d 11744 | . . . 4 ⊢ (𝜑 → (𝐵 · --𝐶) = -(𝐵 · -𝐶)) |
14 | 3 | recnd 11318 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
15 | 14 | negnegd 11638 | . . . . 5 ⊢ (𝜑 → --𝐶 = 𝐶) |
16 | 15 | oveq2d 7464 | . . . 4 ⊢ (𝜑 → (𝐵 · --𝐶) = (𝐵 · 𝐶)) |
17 | 13, 16 | eqtr3d 2782 | . . 3 ⊢ (𝜑 → -(𝐵 · -𝐶) = (𝐵 · 𝐶)) |
18 | 1 | recnd 11318 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18, 12 | mulneg2d 11744 | . . . 4 ⊢ (𝜑 → (𝐴 · --𝐶) = -(𝐴 · -𝐶)) |
20 | 15 | oveq2d 7464 | . . . 4 ⊢ (𝜑 → (𝐴 · --𝐶) = (𝐴 · 𝐶)) |
21 | 19, 20 | eqtr3d 2782 | . . 3 ⊢ (𝜑 → -(𝐴 · -𝐶) = (𝐴 · 𝐶)) |
22 | 17, 21 | breq12d 5179 | . 2 ⊢ (𝜑 → (-(𝐵 · -𝐶) < -(𝐴 · -𝐶) ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
23 | 6, 10, 22 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐴 < 𝐵 ↔ (𝐵 · 𝐶) < (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 0cc0 11184 · cmul 11189 < clt 11324 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-rp 13058 |
This theorem is referenced by: ltdiv23neg 45309 |
Copyright terms: Public domain | W3C validator |