Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod3i2 Structured version   Visualization version   GIF version

Theorem atmod3i2 39844
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod3i2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑌 𝑃)) = (𝑌 (𝑋 𝑃)))

Proof of Theorem atmod3i2
StepHypRef Expression
1 hllat 39341 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝐾 ∈ Lat)
3 simp23 1209 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑌𝐵)
4 simp22 1208 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑋𝐵)
5 simp21 1207 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑃𝐴)
6 atmod.b . . . . . 6 𝐵 = (Base‘𝐾)
7 atmod.a . . . . . 6 𝐴 = (Atoms‘𝐾)
86, 7atbase 39267 . . . . 5 (𝑃𝐴𝑃𝐵)
95, 8syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → 𝑃𝐵)
10 atmod.j . . . . 5 = (join‘𝐾)
116, 10latjcl 18363 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (𝑋 𝑃) ∈ 𝐵)
122, 4, 9, 11syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 𝑃) ∈ 𝐵)
13 atmod.m . . . 4 = (meet‘𝐾)
146, 13latmcom 18387 . . 3 ((𝐾 ∈ Lat ∧ 𝑌𝐵 ∧ (𝑋 𝑃) ∈ 𝐵) → (𝑌 (𝑋 𝑃)) = ((𝑋 𝑃) 𝑌))
152, 3, 12, 14syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑌 (𝑋 𝑃)) = ((𝑋 𝑃) 𝑌))
16 atmod.l . . 3 = (le‘𝐾)
176, 16, 10, 13, 7atmod1i2 39838 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = ((𝑋 𝑃) 𝑌))
186, 13latmcom 18387 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵) → (𝑃 𝑌) = (𝑌 𝑃))
192, 9, 3, 18syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑃 𝑌) = (𝑌 𝑃))
2019oveq2d 7369 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑃 𝑌)) = (𝑋 (𝑌 𝑃)))
2115, 17, 203eqtr2rd 2771 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋 𝑌) → (𝑋 (𝑌 𝑃)) = (𝑌 (𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  Latclat 18355  Atomscatm 39241  HLchlt 39328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-psubsp 39482  df-pmap 39483  df-padd 39775
This theorem is referenced by:  dalawlem3  39852
  Copyright terms: Public domain W3C validator