![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod3i2 | Structured version Visualization version GIF version |
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atmod3i2 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑌 ∧ 𝑃)) = (𝑌 ∧ (𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38171 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝐾 ∈ Lat) |
3 | simp23 1209 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
4 | simp22 1208 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
5 | simp21 1207 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑃 ∈ 𝐴) | |
6 | atmod.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
7 | atmod.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 6, 7 | atbase 38097 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
9 | 5, 8 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → 𝑃 ∈ 𝐵) |
10 | atmod.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
11 | 6, 10 | latjcl 18388 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑋 ∨ 𝑃) ∈ 𝐵) |
12 | 2, 4, 9, 11 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ 𝑃) ∈ 𝐵) |
13 | atmod.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
14 | 6, 13 | latmcom 18412 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ (𝑋 ∨ 𝑃) ∈ 𝐵) → (𝑌 ∧ (𝑋 ∨ 𝑃)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
15 | 2, 3, 12, 14 | syl3anc 1372 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑌 ∧ (𝑋 ∨ 𝑃)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
16 | atmod.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
17 | 6, 16, 10, 13, 7 | atmod1i2 38668 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
18 | 6, 13 | latmcom 18412 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃 ∧ 𝑌) = (𝑌 ∧ 𝑃)) |
19 | 2, 9, 3, 18 | syl3anc 1372 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑃 ∧ 𝑌) = (𝑌 ∧ 𝑃)) |
20 | 19 | oveq2d 7420 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = (𝑋 ∨ (𝑌 ∧ 𝑃))) |
21 | 15, 17, 20 | 3eqtr2rd 2780 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑌 ∧ 𝑃)) = (𝑌 ∧ (𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 Basecbs 17140 lecple 17200 joincjn 18260 meetcmee 18261 Latclat 18380 Atomscatm 38071 HLchlt 38158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-1st 7970 df-2nd 7971 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 37984 df-ol 37986 df-oml 37987 df-covers 38074 df-ats 38075 df-atl 38106 df-cvlat 38130 df-hlat 38159 df-psubsp 38312 df-pmap 38313 df-padd 38605 |
This theorem is referenced by: dalawlem3 38682 |
Copyright terms: Public domain | W3C validator |