| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod4i1 | Structured version Visualization version GIF version | ||
| Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
| atmod.l | ⊢ ≤ = (le‘𝐾) |
| atmod.j | ⊢ ∨ = (join‘𝐾) |
| atmod.m | ⊢ ∧ = (meet‘𝐾) |
| atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atmod4i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39410 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝐾 ∈ Lat) |
| 3 | simp22 1208 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
| 4 | simp23 1209 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
| 5 | atmod.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | atmod.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
| 7 | 5, 6 | latmcl 18346 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 8 | 2, 3, 4, 7 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 9 | simp21 1207 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑃 ∈ 𝐴) | |
| 10 | atmod.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 11 | 5, 10 | atbase 39336 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑃 ∈ 𝐵) |
| 13 | atmod.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
| 14 | 5, 13 | latjcom 18353 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
| 15 | 2, 8, 12, 14 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
| 16 | atmod.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 17 | 5, 16, 13, 6, 10 | atmod1i1 39904 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
| 18 | 5, 13 | latjcom 18353 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
| 19 | 2, 12, 3, 18 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
| 20 | 19 | oveq1d 7361 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| 21 | 15, 17, 20 | 3eqtrd 2770 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 meetcmee 18218 Latclat 18337 Atomscatm 39310 HLchlt 39397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39223 df-ol 39225 df-oml 39226 df-covers 39313 df-ats 39314 df-atl 39345 df-cvlat 39369 df-hlat 39398 df-psubsp 39550 df-pmap 39551 df-padd 39843 |
| This theorem is referenced by: dalawlem3 39920 dalawlem7 39924 dalawlem11 39928 cdleme9 40300 cdleme20aN 40356 cdleme22cN 40389 cdleme22d 40390 cdlemh1 40862 dia2dimlem1 41111 dia2dimlem2 41112 dia2dimlem3 41113 |
| Copyright terms: Public domain | W3C validator |