Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod4i1 | Structured version Visualization version GIF version |
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atmod4i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37377 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝐾 ∈ Lat) |
3 | simp22 1206 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑋 ∈ 𝐵) | |
4 | simp23 1207 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑌 ∈ 𝐵) | |
5 | atmod.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
6 | atmod.m | . . . . 5 ⊢ ∧ = (meet‘𝐾) | |
7 | 5, 6 | latmcl 18158 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
8 | 2, 3, 4, 7 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
9 | simp21 1205 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑃 ∈ 𝐴) | |
10 | atmod.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 5, 10 | atbase 37303 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → 𝑃 ∈ 𝐵) |
13 | atmod.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
14 | 5, 13 | latjcom 18165 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
15 | 2, 8, 12, 14 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑃 ∨ (𝑋 ∧ 𝑌))) |
16 | atmod.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
17 | 5, 16, 13, 6, 10 | atmod1i1 37871 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) |
18 | 5, 13 | latjcom 18165 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
19 | 2, 12, 3, 18 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
20 | 19 | oveq1d 7290 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑃 ∨ 𝑋) ∧ 𝑌) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
21 | 15, 17, 20 | 3eqtrd 2782 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Latclat 18149 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-psubsp 37517 df-pmap 37518 df-padd 37810 |
This theorem is referenced by: dalawlem3 37887 dalawlem7 37891 dalawlem11 37895 cdleme9 38267 cdleme20aN 38323 cdleme22cN 38356 cdleme22d 38357 cdlemh1 38829 dia2dimlem1 39078 dia2dimlem2 39079 dia2dimlem3 39080 |
Copyright terms: Public domain | W3C validator |