Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod3i1 | Structured version Visualization version GIF version |
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atmod3i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) | |
2 | simp21 1205 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
3 | simp23 1207 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑌 ∈ 𝐵) | |
4 | simp22 1206 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
5 | simp3 1137 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | |
6 | atmod.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | atmod.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | atmod.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | atmod.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
10 | atmod.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 6, 7, 8, 9, 10 | atmod1i1 37871 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
12 | 1, 2, 3, 4, 5, 11 | syl131anc 1382 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
13 | hllat 37377 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Lat) |
15 | 6, 9 | latmcom 18181 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
16 | 14, 4, 3, 15 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
17 | 16 | oveq2d 7291 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ (𝑌 ∧ 𝑋))) |
18 | 6, 10 | atbase 37303 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
19 | 2, 18 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
20 | 6, 8 | latjcl 18157 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
21 | 14, 19, 3, 20 | syl3anc 1370 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
22 | 6, 9 | latmcom 18181 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
23 | 14, 4, 21, 22 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
24 | 12, 17, 23 | 3eqtr4d 2788 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 lecple 16969 joincjn 18029 meetcmee 18030 Latclat 18149 Atomscatm 37277 HLchlt 37364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-psubsp 37517 df-pmap 37518 df-padd 37810 |
This theorem is referenced by: dalawlem2 37886 dalawlem3 37887 dalawlem6 37890 lhpmcvr3 38039 cdleme0cp 38228 cdleme0cq 38229 cdleme1 38241 cdleme4 38252 cdleme5 38254 cdleme8 38264 cdleme9 38267 cdleme10 38268 cdleme15b 38289 cdleme22e 38358 cdleme22eALTN 38359 cdleme23c 38365 cdleme35b 38464 cdleme35e 38467 cdleme42a 38485 trlcoabs2N 38736 cdlemi1 38832 cdlemk4 38848 dia2dimlem1 39078 dia2dimlem2 39079 cdlemn10 39220 dihglbcpreN 39314 |
Copyright terms: Public domain | W3C validator |