![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atmod3i1 | Structured version Visualization version GIF version |
Description: Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
atmod.b | ⊢ 𝐵 = (Base‘𝐾) |
atmod.l | ⊢ ≤ = (le‘𝐾) |
atmod.j | ⊢ ∨ = (join‘𝐾) |
atmod.m | ⊢ ∧ = (meet‘𝐾) |
atmod.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atmod3i1 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) | |
2 | simp21 1203 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
3 | simp23 1205 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑌 ∈ 𝐵) | |
4 | simp22 1204 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
5 | simp3 1135 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) | |
6 | atmod.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | atmod.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | atmod.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | atmod.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
10 | atmod.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 6, 7, 8, 9, 10 | atmod1i1 39460 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
12 | 1, 2, 3, 4, 5, 11 | syl131anc 1380 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
13 | hllat 38965 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
14 | 13 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Lat) |
15 | 6, 9 | latmcom 18458 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
16 | 14, 4, 3, 15 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
17 | 16 | oveq2d 7435 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ (𝑌 ∧ 𝑋))) |
18 | 6, 10 | atbase 38891 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
19 | 2, 18 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
20 | 6, 8 | latjcl 18434 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
21 | 14, 19, 3, 20 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
22 | 6, 9 | latmcom 18458 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑃 ∨ 𝑌) ∈ 𝐵) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
23 | 14, 4, 21, 22 | syl3anc 1368 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (𝑃 ∨ 𝑌)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
24 | 12, 17, 23 | 3eqtr4d 2775 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 lecple 17243 joincjn 18306 meetcmee 18307 Latclat 18426 Atomscatm 38865 HLchlt 38952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 df-proset 18290 df-poset 18308 df-plt 18325 df-lub 18341 df-glb 18342 df-join 18343 df-meet 18344 df-p0 18420 df-lat 18427 df-clat 18494 df-oposet 38778 df-ol 38780 df-oml 38781 df-covers 38868 df-ats 38869 df-atl 38900 df-cvlat 38924 df-hlat 38953 df-psubsp 39106 df-pmap 39107 df-padd 39399 |
This theorem is referenced by: dalawlem2 39475 dalawlem3 39476 dalawlem6 39479 lhpmcvr3 39628 cdleme0cp 39817 cdleme0cq 39818 cdleme1 39830 cdleme4 39841 cdleme5 39843 cdleme8 39853 cdleme9 39856 cdleme10 39857 cdleme15b 39878 cdleme22e 39947 cdleme22eALTN 39948 cdleme23c 39954 cdleme35b 40053 cdleme35e 40056 cdleme42a 40074 trlcoabs2N 40325 cdlemi1 40421 cdlemk4 40437 dia2dimlem1 40667 dia2dimlem2 40668 cdlemn10 40809 dihglbcpreN 40903 |
Copyright terms: Public domain | W3C validator |