Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem1 Structured version   Visualization version   GIF version

Theorem stirlinglem1 42642
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem1.1 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem1.2 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
stirlinglem1.3 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
stirlinglem1.4 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
stirlinglem1 𝐻 ⇝ (1 / 2)

Proof of Theorem stirlinglem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12278 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12010 . . . 4 (⊤ → 1 ∈ ℤ)
3 stirlinglem1.4 . . . . . . . . 9 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
4 ax-1cn 10593 . . . . . . . . . 10 1 ∈ ℂ
5 divcnv 15208 . . . . . . . . . 10 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
64, 5ax-mp 5 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0
73, 6eqbrtri 5073 . . . . . . . 8 𝐿 ⇝ 0
87a1i 11 . . . . . . 7 (⊤ → 𝐿 ⇝ 0)
9 stirlinglem1.3 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
10 nnex 11640 . . . . . . . . . 10 ℕ ∈ V
1110mptex 6977 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
129, 11eqeltri 2912 . . . . . . . 8 𝐺 ∈ V
1312a1i 11 . . . . . . 7 (⊤ → 𝐺 ∈ V)
143a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
15 simpr 488 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1615oveq2d 7165 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 𝑛) = (1 / 𝑘))
17 id 22 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
18 nnrp 12397 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1918rpreccld 12438 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
2014, 16, 17, 19fvmptd 6766 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐿𝑘) = (1 / 𝑘))
21 nnrecre 11676 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
2220, 21eqeltrd 2916 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐿𝑘) ∈ ℝ)
2322adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
249a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
2515oveq2d 7165 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
2625oveq1d 7164 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2726oveq2d 7165 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
28 2re 11708 . . . . . . . . . . . . . 14 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ)
30 nnre 11641 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3129, 30remulcld 10669 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
32 0le2 11736 . . . . . . . . . . . . . 14 0 ≤ 2
3332a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 2)
3418rpge0d 12432 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
3529, 30, 33, 34mulge0d 11215 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (2 · 𝑘))
3631, 35ge0p1rpd 12458 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ+)
3736rpreccld 12438 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
3824, 27, 17, 37fvmptd 6766 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
3937rpred 12428 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
4038, 39eqeltrd 2916 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
4140adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
42 1red 10640 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
43 0le1 11161 . . . . . . . . . . 11 0 ≤ 1
4443a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 ≤ 1)
4531, 42readdcld 10668 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
46 nncn 11642 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746mulid2d 10657 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) = 𝑘)
48 1lt2 11805 . . . . . . . . . . . . . . 15 1 < 2
4948a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 1 < 2)
5042, 29, 18, 49ltmul1dd 12483 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) < (2 · 𝑘))
5147, 50eqbrtrrd 5076 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 < (2 · 𝑘))
5231ltp1d 11568 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
5330, 31, 45, 51, 52lttrd 10799 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 < ((2 · 𝑘) + 1))
5430, 45, 53ltled 10786 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≤ ((2 · 𝑘) + 1))
5518, 36, 42, 44, 54lediv2ad 12450 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5655, 38, 203brtr4d 5084 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
5756adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
5837rpge0d 12432 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5958, 38breqtrrd 5080 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (𝐺𝑘))
6059adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
611, 2, 8, 13, 23, 41, 57, 60climsqz2 14998 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
62 1cnd 10634 . . . . . 6 (⊤ → 1 ∈ ℂ)
63 stirlinglem1.2 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
6410mptex 6977 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V
6563, 64eqeltri 2912 . . . . . . 7 𝐹 ∈ V
6665a1i 11 . . . . . 6 (⊤ → 𝐹 ∈ V)
6741recnd 10667 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
6863a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
6927oveq2d 7165 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / ((2 · 𝑘) + 1))))
70 1cnd 10634 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℂ)
71 2cnd 11712 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℂ)
7271, 46mulcld 10659 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
7372, 70addcld 10658 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7436rpne0d 12433 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
7573, 74reccld 11407 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
7670, 75subcld 10995 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) ∈ ℂ)
7768, 69, 17, 76fvmptd 6766 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (1 / ((2 · 𝑘) + 1))))
7838eqcomd 2830 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) = (𝐺𝑘))
7978oveq2d 7165 . . . . . . . 8 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) = (1 − (𝐺𝑘)))
8077, 79eqtrd 2859 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (𝐺𝑘)))
8180adantl 485 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (1 − (𝐺𝑘)))
821, 2, 61, 62, 66, 67, 81climsubc2 14995 . . . . 5 (⊤ → 𝐹 ⇝ (1 − 0))
83 1m0e1 11755 . . . . 5 (1 − 0) = 1
8482, 83breqtrdi 5093 . . . 4 (⊤ → 𝐹 ⇝ 1)
8562halfcld 11879 . . . 4 (⊤ → (1 / 2) ∈ ℂ)
86 stirlinglem1.1 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
8710mptex 6977 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ V
8886, 87eqeltri 2912 . . . . 5 𝐻 ∈ V
8988a1i 11 . . . 4 (⊤ → 𝐻 ∈ V)
9077, 76eqeltrd 2916 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
9190adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
92 nncn 11642 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
9392sqcld 13513 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
9493mulid2d 10657 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 · (𝑛↑2)) = (𝑛↑2))
9594eqcomd 2830 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑2) = (1 · (𝑛↑2)))
96 2cnd 11712 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
9796, 92mulcld 10659 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
98 1cnd 10634 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 1 ∈ ℂ)
9992, 97, 98adddid 10663 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)))
10092, 96, 92mul12d 10847 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛 · 𝑛)))
10192sqvald 13512 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛))
102101eqcomd 2830 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 · 𝑛) = (𝑛↑2))
103102oveq2d 7165 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · (𝑛 · 𝑛)) = (2 · (𝑛↑2)))
104100, 103eqtrd 2859 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛↑2)))
10592mulid1d 10656 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
106104, 105oveq12d 7167 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)) = ((2 · (𝑛↑2)) + 𝑛))
107 2ne0 11738 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 2 ≠ 0)
10992, 96, 108divcan2d 11416 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 · (𝑛 / 2)) = 𝑛)
110109eqcomd 2830 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 = (2 · (𝑛 / 2)))
111110oveq2d 7165 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
11292halfcld 11879 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℂ)
11396, 93, 112adddid 10663 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) + (𝑛 / 2))) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
114111, 113eqtr4d 2862 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11599, 106, 1143eqtrd 2863 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11695, 115oveq12d 7167 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
11793, 112addcld 10658 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℂ)
118 nnrp 12397 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119 2z 12011 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
120119a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℤ)
121118, 120rpexpcld 13613 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℝ+)
122118rphalfcld 12440 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℝ+)
123121, 122rpaddcld 12443 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℝ+)
124123rpne0d 12433 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ≠ 0)
12598, 96, 93, 117, 108, 124divmuldivd 11455 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
12693, 112pncand 10996 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) = (𝑛↑2))
127126eqcomd 2830 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑2) = (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)))
128127oveq1d 7164 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))))
129117, 112, 117, 124divsubdird 11453 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
130117, 124dividd 11412 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = 1)
131130oveq1d 7164 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
132128, 129, 1313eqtrd 2863 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
133 nnne0 11668 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
13496, 92, 133divcld 11414 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ∈ ℂ)
13596, 92, 108, 133divne0d 11430 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ≠ 0)
136112, 117, 134, 124, 135divcan5rd 11441 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))
13792, 96, 133, 108divcan6d 11433 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / 2) · (2 / 𝑛)) = 1)
13893, 112, 134adddird 10664 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))))
13993, 96, 92, 133div12d 11450 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · ((𝑛↑2) / 𝑛)))
140 1e2m1 11761 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (2 − 1)
141140oveq2i 7160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛↑1) = (𝑛↑(2 − 1))
14292exp1d 13510 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
14392, 133, 120expm1d 13525 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑(2 − 1)) = ((𝑛↑2) / 𝑛))
144141, 142, 1433eqtr3a 2883 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 = ((𝑛↑2) / 𝑛))
145144eqcomd 2830 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛)
146145oveq2d 7165 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) / 𝑛)) = (2 · 𝑛))
147139, 146eqtrd 2859 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · 𝑛))
148147, 137oveq12d 7167 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))) = ((2 · 𝑛) + 1))
149138, 148eqtrd 2859 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = ((2 · 𝑛) + 1))
150137, 149oveq12d 7167 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = (1 / ((2 · 𝑛) + 1)))
151136, 150eqtr3d 2861 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))) = (1 / ((2 · 𝑛) + 1)))
152151oveq2d 7165 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − (1 / ((2 · 𝑛) + 1))))
153132, 152eqtrd 2859 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − (1 / ((2 · 𝑛) + 1))))
154153oveq2d 7165 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
155116, 125, 1543eqtr2d 2865 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
156155mpteq2ia 5143 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
15786, 156eqtri 2847 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
158157a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1))))))
15969oveq2d 7165 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16070halfcld 11879 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 2) ∈ ℂ)
161160, 76mulcld 10659 . . . . . . 7 (𝑘 ∈ ℕ → ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))) ∈ ℂ)
162158, 159, 17, 161fvmptd 6766 . . . . . 6 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16377oveq2d 7165 . . . . . 6 (𝑘 ∈ ℕ → ((1 / 2) · (𝐹𝑘)) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
164162, 163eqtr4d 2862 . . . . 5 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
165164adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
1661, 2, 84, 85, 89, 91, 165climmulc2 14993 . . 3 (⊤ → 𝐻 ⇝ ((1 / 2) · 1))
167166mptru 1545 . 2 𝐻 ⇝ ((1 / 2) · 1)
168 halfcn 11849 . . 3 (1 / 2) ∈ ℂ
169168mulid1i 10643 . 2 ((1 / 2) · 1) = (1 / 2)
170167, 169breqtri 5077 1 𝐻 ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2115  wne 3014  Vcvv 3480   class class class wbr 5052  cmpt 5132  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  0cc0 10535  1c1 10536   + caddc 10538   · cmul 10540   < clt 10673  cle 10674  cmin 10868   / cdiv 11295  cn 11634  2c2 11689  cz 11978  +crp 12386  cexp 13434  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-fl 13166  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846
This theorem is referenced by:  stirlinglem15  42656
  Copyright terms: Public domain W3C validator