Step | Hyp | Ref
| Expression |
1 | | nnuz 12550 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 12281 |
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) |
3 | | stirlinglem1.4 |
. . . . . . . . 9
⊢ 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
4 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
5 | | divcnv 15493 |
. . . . . . . . . 10
⊢ (1 ∈
ℂ → (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0) |
6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) ⇝
0 |
7 | 3, 6 | eqbrtri 5091 |
. . . . . . . 8
⊢ 𝐿 ⇝ 0 |
8 | 7 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 𝐿 ⇝
0) |
9 | | stirlinglem1.3 |
. . . . . . . . 9
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1))) |
10 | | nnex 11909 |
. . . . . . . . . 10
⊢ ℕ
∈ V |
11 | 10 | mptex 7081 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 / ((2
· 𝑛) + 1))) ∈
V |
12 | 9, 11 | eqeltri 2835 |
. . . . . . . 8
⊢ 𝐺 ∈ V |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 𝐺 ∈
V) |
14 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
15 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘) |
16 | 15 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 𝑛) = (1 / 𝑘)) |
17 | | id 22 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
18 | | nnrp 12670 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
19 | 18 | rpreccld 12711 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
20 | 14, 16, 17, 19 | fvmptd 6864 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝐿‘𝑘) = (1 / 𝑘)) |
21 | | nnrecre 11945 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
22 | 20, 21 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐿‘𝑘) ∈ ℝ) |
23 | 22 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐿‘𝑘) ∈ ℝ) |
24 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1)))) |
25 | 15 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘)) |
26 | 25 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1)) |
27 | 26 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1))) |
28 | | 2re 11977 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 2 ∈
ℝ) |
30 | | nnre 11910 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
31 | 29, 30 | remulcld 10936 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℝ) |
32 | | 0le2 12005 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
2 |
33 | 32 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 0 ≤
2) |
34 | 18 | rpge0d 12705 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 0 ≤
𝑘) |
35 | 29, 30, 33, 34 | mulge0d 11482 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 0 ≤ (2
· 𝑘)) |
36 | 31, 35 | ge0p1rpd 12731 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ∈
ℝ+) |
37 | 36 | rpreccld 12711 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ∈
ℝ+) |
38 | 24, 27, 17, 37 | fvmptd 6864 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = (1 / ((2 · 𝑘) + 1))) |
39 | 37 | rpred 12701 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ∈
ℝ) |
40 | 38, 39 | eqeltrd 2839 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ∈ ℝ) |
41 | 40 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
42 | | 1red 10907 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ∈
ℝ) |
43 | | 0le1 11428 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
44 | 43 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 0 ≤
1) |
45 | 31, 42 | readdcld 10935 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ∈
ℝ) |
46 | | nncn 11911 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
47 | 46 | mulid2d 10924 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1
· 𝑘) = 𝑘) |
48 | | 1lt2 12074 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
49 | 48 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 1 <
2) |
50 | 42, 29, 18, 49 | ltmul1dd 12756 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1
· 𝑘) < (2
· 𝑘)) |
51 | 47, 50 | eqbrtrrd 5094 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 < (2 · 𝑘)) |
52 | 31 | ltp1d 11835 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) < ((2
· 𝑘) +
1)) |
53 | 30, 31, 45, 51, 52 | lttrd 11066 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 < ((2 · 𝑘) + 1)) |
54 | 30, 45, 53 | ltled 11053 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ≤ ((2 · 𝑘) + 1)) |
55 | 18, 36, 42, 44, 54 | lediv2ad 12723 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ≤ (1 /
𝑘)) |
56 | 55, 38, 20 | 3brtr4d 5102 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ≤ (𝐿‘𝑘)) |
57 | 56 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ≤ (𝐿‘𝑘)) |
58 | 37 | rpge0d 12705 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 0 ≤ (1
/ ((2 · 𝑘) +
1))) |
59 | 58, 38 | breqtrrd 5098 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 0 ≤
(𝐺‘𝑘)) |
60 | 59 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
61 | 1, 2, 8, 13, 23, 41, 57, 60 | climsqz2 15279 |
. . . . . 6
⊢ (⊤
→ 𝐺 ⇝
0) |
62 | | 1cnd 10901 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℂ) |
63 | | stirlinglem1.2 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2
· 𝑛) +
1)))) |
64 | 10 | mptex 7081 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (1
− (1 / ((2 · 𝑛) + 1)))) ∈ V |
65 | 63, 64 | eqeltri 2835 |
. . . . . . 7
⊢ 𝐹 ∈ V |
66 | 65 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝐹 ∈
V) |
67 | 41 | recnd 10934 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) |
68 | 63 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2
· 𝑛) +
1))))) |
69 | 27 | oveq2d 7271 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / ((2
· 𝑘) +
1)))) |
70 | | 1cnd 10901 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ∈
ℂ) |
71 | | 2cnd 11981 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 2 ∈
ℂ) |
72 | 71, 46 | mulcld 10926 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℂ) |
73 | 72, 70 | addcld 10925 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ∈
ℂ) |
74 | 36 | rpne0d 12706 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ≠
0) |
75 | 73, 74 | reccld 11674 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ∈
ℂ) |
76 | 70, 75 | subcld 11262 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1
− (1 / ((2 · 𝑘) + 1))) ∈ ℂ) |
77 | 68, 69, 17, 76 | fvmptd 6864 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (1 − (1 / ((2 · 𝑘) + 1)))) |
78 | 38 | eqcomd 2744 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) = (𝐺‘𝑘)) |
79 | 78 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (1
− (1 / ((2 · 𝑘) + 1))) = (1 − (𝐺‘𝑘))) |
80 | 77, 79 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (1 − (𝐺‘𝑘))) |
81 | 80 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (1 − (𝐺‘𝑘))) |
82 | 1, 2, 61, 62, 66, 67, 81 | climsubc2 15276 |
. . . . 5
⊢ (⊤
→ 𝐹 ⇝ (1 −
0)) |
83 | | 1m0e1 12024 |
. . . . 5
⊢ (1
− 0) = 1 |
84 | 82, 83 | breqtrdi 5111 |
. . . 4
⊢ (⊤
→ 𝐹 ⇝
1) |
85 | 62 | halfcld 12148 |
. . . 4
⊢ (⊤
→ (1 / 2) ∈ ℂ) |
86 | | stirlinglem1.1 |
. . . . . 6
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) |
87 | 10 | mptex 7081 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ V |
88 | 86, 87 | eqeltri 2835 |
. . . . 5
⊢ 𝐻 ∈ V |
89 | 88 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝐻 ∈
V) |
90 | 77, 76 | eqeltrd 2839 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℂ) |
91 | 90 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
92 | | nncn 11911 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
93 | 92 | sqcld 13790 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛↑2) ∈
ℂ) |
94 | 93 | mulid2d 10924 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1
· (𝑛↑2)) =
(𝑛↑2)) |
95 | 94 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛↑2) = (1 · (𝑛↑2))) |
96 | | 2cnd 11981 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 2 ∈
ℂ) |
97 | 96, 92 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (2
· 𝑛) ∈
ℂ) |
98 | | 1cnd 10901 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 1 ∈
ℂ) |
99 | 92, 97, 98 | adddid 10930 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = ((𝑛 · (2 · 𝑛)) + (𝑛 · 1))) |
100 | 92, 96, 92 | mul12d 11114 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛 · 𝑛))) |
101 | 92 | sqvald 13789 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛)) |
102 | 101 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (𝑛 · 𝑛) = (𝑛↑2)) |
103 | 102 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 · 𝑛)) = (2 · (𝑛↑2))) |
104 | 100, 103 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛↑2))) |
105 | 92 | mulid1d 10923 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛) |
106 | 104, 105 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)) = ((2 · (𝑛↑2)) + 𝑛)) |
107 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
108 | 107 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 2 ≠
0) |
109 | 92, 96, 108 | divcan2d 11683 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 / 2)) = 𝑛) |
110 | 109 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 = (2 · (𝑛 / 2))) |
111 | 110 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((2
· (𝑛↑2)) +
𝑛) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2)))) |
112 | 92 | halfcld 12148 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 / 2) ∈
ℂ) |
113 | 96, 93, 112 | adddid 10930 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (2
· ((𝑛↑2) +
(𝑛 / 2))) = ((2 ·
(𝑛↑2)) + (2 ·
(𝑛 / 2)))) |
114 | 111, 113 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((2
· (𝑛↑2)) +
𝑛) = (2 · ((𝑛↑2) + (𝑛 / 2)))) |
115 | 99, 106, 114 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = (2 · ((𝑛↑2) + (𝑛 / 2)))) |
116 | 95, 115 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2))))) |
117 | 93, 112 | addcld 10925 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℂ) |
118 | | nnrp 12670 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
119 | | 2z 12282 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
120 | 119 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 2 ∈
ℤ) |
121 | 118, 120 | rpexpcld 13890 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛↑2) ∈
ℝ+) |
122 | 118 | rphalfcld 12713 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 / 2) ∈
ℝ+) |
123 | 121, 122 | rpaddcld 12716 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈
ℝ+) |
124 | 123 | rpne0d 12706 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ≠ 0) |
125 | 98, 96, 93, 117, 108, 124 | divmuldivd 11722 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((1 / 2)
· ((𝑛↑2) /
((𝑛↑2) + (𝑛 / 2)))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2))))) |
126 | 93, 112 | pncand 11263 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) = (𝑛↑2)) |
127 | 126 | eqcomd 2744 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛↑2) = (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2))) |
128 | 127 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2)))) |
129 | 117, 112,
117, 124 | divsubdird 11720 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))) |
130 | 117, 124 | dividd 11679 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = 1) |
131 | 130 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))) |
132 | 128, 129,
131 | 3eqtrd 2782 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))) |
133 | | nnne0 11937 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
134 | 96, 92, 133 | divcld 11681 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (2 /
𝑛) ∈
ℂ) |
135 | 96, 92, 108, 133 | divne0d 11697 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (2 /
𝑛) ≠ 0) |
136 | 112, 117,
134, 124, 135 | divcan5rd 11708 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) |
137 | 92, 96, 133, 108 | divcan6d 11700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) · (2 / 𝑛)) = 1) |
138 | 93, 112, 134 | adddird 10931 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛)))) |
139 | 93, 96, 92, 133 | div12d 11717 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · ((𝑛↑2) / 𝑛))) |
140 | | 1e2m1 12030 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (2
− 1) |
141 | 140 | oveq2i 7266 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛↑1) = (𝑛↑(2 − 1)) |
142 | 92 | exp1d 13787 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛) |
143 | 92, 133, 120 | expm1d 13802 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℕ → (𝑛↑(2 − 1)) = ((𝑛↑2) / 𝑛)) |
144 | 141, 142,
143 | 3eqtr3a 2803 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 = ((𝑛↑2) / 𝑛)) |
145 | 144 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛) |
146 | 145 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ → (2
· ((𝑛↑2) /
𝑛)) = (2 · 𝑛)) |
147 | 139, 146 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · 𝑛)) |
148 | 147, 137 | oveq12d 7273 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))) = ((2 · 𝑛) + 1)) |
149 | 138, 148 | eqtrd 2778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = ((2 · 𝑛) + 1)) |
150 | 137, 149 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = (1 / ((2 · 𝑛) + 1))) |
151 | 136, 150 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))) = (1 / ((2 · 𝑛) + 1))) |
152 | 151 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1
− ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − (1 / ((2 · 𝑛) + 1)))) |
153 | 132, 152 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − (1 / ((2 · 𝑛) + 1)))) |
154 | 153 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((1 / 2)
· ((𝑛↑2) /
((𝑛↑2) + (𝑛 / 2)))) = ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1))))) |
155 | 116, 125,
154 | 3eqtr2d 2784 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 / 2) · (1 − (1 /
((2 · 𝑛) +
1))))) |
156 | 155 | mpteq2ia 5173 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1))))) |
157 | 86, 156 | eqtri 2766 |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1))))) |
158 | 157 | a1i 11 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1)))))) |
159 | 69 | oveq2d 7271 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((1 / 2) · (1 − (1 /
((2 · 𝑛) + 1)))) =
((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1))))) |
160 | 70 | halfcld 12148 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (1 / 2)
∈ ℂ) |
161 | 160, 76 | mulcld 10926 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((1 / 2)
· (1 − (1 / ((2 · 𝑘) + 1)))) ∈ ℂ) |
162 | 158, 159,
17, 161 | fvmptd 6864 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝐻‘𝑘) = ((1 / 2) · (1 − (1 / ((2
· 𝑘) +
1))))) |
163 | 77 | oveq2d 7271 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((1 / 2)
· (𝐹‘𝑘)) = ((1 / 2) · (1
− (1 / ((2 · 𝑘) + 1))))) |
164 | 162, 163 | eqtr4d 2781 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝐻‘𝑘) = ((1 / 2) · (𝐹‘𝑘))) |
165 | 164 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐻‘𝑘) = ((1 / 2) · (𝐹‘𝑘))) |
166 | 1, 2, 84, 85, 89, 91, 165 | climmulc2 15274 |
. . 3
⊢ (⊤
→ 𝐻 ⇝ ((1 / 2)
· 1)) |
167 | 166 | mptru 1546 |
. 2
⊢ 𝐻 ⇝ ((1 / 2) ·
1) |
168 | | halfcn 12118 |
. . 3
⊢ (1 / 2)
∈ ℂ |
169 | 168 | mulid1i 10910 |
. 2
⊢ ((1 / 2)
· 1) = (1 / 2) |
170 | 167, 169 | breqtri 5095 |
1
⊢ 𝐻 ⇝ (1 /
2) |