| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 12900 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 12628 |
. . . 4
⊢ (⊤
→ 1 ∈ ℤ) |
| 3 | | stirlinglem1.4 |
. . . . . . . . 9
⊢ 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)) |
| 4 | | ax-1cn 11192 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 5 | | divcnv 15874 |
. . . . . . . . . 10
⊢ (1 ∈
ℂ → (𝑛 ∈
ℕ ↦ (1 / 𝑛))
⇝ 0) |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 /
𝑛)) ⇝
0 |
| 7 | 3, 6 | eqbrtri 5145 |
. . . . . . . 8
⊢ 𝐿 ⇝ 0 |
| 8 | 7 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 𝐿 ⇝
0) |
| 9 | | stirlinglem1.3 |
. . . . . . . . 9
⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1))) |
| 10 | | nnex 12251 |
. . . . . . . . . 10
⊢ ℕ
∈ V |
| 11 | 10 | mptex 7220 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ (1 / ((2
· 𝑛) + 1))) ∈
V |
| 12 | 9, 11 | eqeltri 2831 |
. . . . . . . 8
⊢ 𝐺 ∈ V |
| 13 | 12 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 𝐺 ∈
V) |
| 14 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))) |
| 15 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘) |
| 16 | 15 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 𝑛) = (1 / 𝑘)) |
| 17 | | id 22 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
| 18 | | nnrp 13025 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
| 19 | 18 | rpreccld 13066 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ+) |
| 20 | 14, 16, 17, 19 | fvmptd 6998 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝐿‘𝑘) = (1 / 𝑘)) |
| 21 | | nnrecre 12287 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
| 22 | 20, 21 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐿‘𝑘) ∈ ℝ) |
| 23 | 22 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐿‘𝑘) ∈ ℝ) |
| 24 | 9 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 ·
𝑛) + 1)))) |
| 25 | 15 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘)) |
| 26 | 25 | oveq1d 7425 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1)) |
| 27 | 26 | oveq2d 7426 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1))) |
| 28 | | 2re 12319 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
| 29 | 28 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 2 ∈
ℝ) |
| 30 | | nnre 12252 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
| 31 | 29, 30 | remulcld 11270 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℝ) |
| 32 | | 0le2 12347 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
2 |
| 33 | 32 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 0 ≤
2) |
| 34 | 18 | rpge0d 13060 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 0 ≤
𝑘) |
| 35 | 29, 30, 33, 34 | mulge0d 11819 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 0 ≤ (2
· 𝑘)) |
| 36 | 31, 35 | ge0p1rpd 13086 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ∈
ℝ+) |
| 37 | 36 | rpreccld 13066 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ∈
ℝ+) |
| 38 | 24, 27, 17, 37 | fvmptd 6998 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) = (1 / ((2 · 𝑘) + 1))) |
| 39 | 37 | rpred 13056 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ∈
ℝ) |
| 40 | 38, 39 | eqeltrd 2835 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ∈ ℝ) |
| 41 | 40 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℝ) |
| 42 | | 1red 11241 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ∈
ℝ) |
| 43 | | 0le1 11765 |
. . . . . . . . . . 11
⊢ 0 ≤
1 |
| 44 | 43 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 0 ≤
1) |
| 45 | 31, 42 | readdcld 11269 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ∈
ℝ) |
| 46 | | nncn 12253 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
| 47 | 46 | mullidd 11258 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1
· 𝑘) = 𝑘) |
| 48 | | 1lt2 12416 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 1 <
2) |
| 50 | 42, 29, 18, 49 | ltmul1dd 13111 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (1
· 𝑘) < (2
· 𝑘)) |
| 51 | 47, 50 | eqbrtrrd 5148 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → 𝑘 < (2 · 𝑘)) |
| 52 | 31 | ltp1d 12177 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) < ((2
· 𝑘) +
1)) |
| 53 | 30, 31, 45, 51, 52 | lttrd 11401 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → 𝑘 < ((2 · 𝑘) + 1)) |
| 54 | 30, 45, 53 | ltled 11388 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 𝑘 ≤ ((2 · 𝑘) + 1)) |
| 55 | 18, 36, 42, 44, 54 | lediv2ad 13078 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ≤ (1 /
𝑘)) |
| 56 | 55, 38, 20 | 3brtr4d 5156 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐺‘𝑘) ≤ (𝐿‘𝑘)) |
| 57 | 56 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ≤ (𝐿‘𝑘)) |
| 58 | 37 | rpge0d 13060 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 0 ≤ (1
/ ((2 · 𝑘) +
1))) |
| 59 | 58, 38 | breqtrrd 5152 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 0 ≤
(𝐺‘𝑘)) |
| 60 | 59 | adantl 481 |
. . . . . . 7
⊢
((⊤ ∧ 𝑘
∈ ℕ) → 0 ≤ (𝐺‘𝑘)) |
| 61 | 1, 2, 8, 13, 23, 41, 57, 60 | climsqz2 15663 |
. . . . . 6
⊢ (⊤
→ 𝐺 ⇝
0) |
| 62 | | 1cnd 11235 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℂ) |
| 63 | | stirlinglem1.2 |
. . . . . . . 8
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2
· 𝑛) +
1)))) |
| 64 | 10 | mptex 7220 |
. . . . . . . 8
⊢ (𝑛 ∈ ℕ ↦ (1
− (1 / ((2 · 𝑛) + 1)))) ∈ V |
| 65 | 63, 64 | eqeltri 2831 |
. . . . . . 7
⊢ 𝐹 ∈ V |
| 66 | 65 | a1i 11 |
. . . . . 6
⊢ (⊤
→ 𝐹 ∈
V) |
| 67 | 41 | recnd 11268 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐺‘𝑘) ∈ ℂ) |
| 68 | 63 | a1i 11 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2
· 𝑛) +
1))))) |
| 69 | 27 | oveq2d 7426 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / ((2
· 𝑘) +
1)))) |
| 70 | | 1cnd 11235 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → 1 ∈
ℂ) |
| 71 | | 2cnd 12323 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → 2 ∈
ℂ) |
| 72 | 71, 46 | mulcld 11260 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ → (2
· 𝑘) ∈
ℂ) |
| 73 | 72, 70 | addcld 11259 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ∈
ℂ) |
| 74 | 36 | rpne0d 13061 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((2
· 𝑘) + 1) ≠
0) |
| 75 | 73, 74 | reccld 12015 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) ∈
ℂ) |
| 76 | 70, 75 | subcld 11599 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1
− (1 / ((2 · 𝑘) + 1))) ∈ ℂ) |
| 77 | 68, 69, 17, 76 | fvmptd 6998 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (1 − (1 / ((2 · 𝑘) + 1)))) |
| 78 | 38 | eqcomd 2742 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → (1 / ((2
· 𝑘) + 1)) = (𝐺‘𝑘)) |
| 79 | 78 | oveq2d 7426 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (1
− (1 / ((2 · 𝑘) + 1))) = (1 − (𝐺‘𝑘))) |
| 80 | 77, 79 | eqtrd 2771 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) = (1 − (𝐺‘𝑘))) |
| 81 | 80 | adantl 481 |
. . . . . 6
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) = (1 − (𝐺‘𝑘))) |
| 82 | 1, 2, 61, 62, 66, 67, 81 | climsubc2 15660 |
. . . . 5
⊢ (⊤
→ 𝐹 ⇝ (1 −
0)) |
| 83 | | 1m0e1 12366 |
. . . . 5
⊢ (1
− 0) = 1 |
| 84 | 82, 83 | breqtrdi 5165 |
. . . 4
⊢ (⊤
→ 𝐹 ⇝
1) |
| 85 | 62 | halfcld 12491 |
. . . 4
⊢ (⊤
→ (1 / 2) ∈ ℂ) |
| 86 | | stirlinglem1.1 |
. . . . . 6
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) |
| 87 | 10 | mptex 7220 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ V |
| 88 | 86, 87 | eqeltri 2831 |
. . . . 5
⊢ 𝐻 ∈ V |
| 89 | 88 | a1i 11 |
. . . 4
⊢ (⊤
→ 𝐻 ∈
V) |
| 90 | 77, 76 | eqeltrd 2835 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝐹‘𝑘) ∈ ℂ) |
| 91 | 90 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐹‘𝑘) ∈ ℂ) |
| 92 | | nncn 12253 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
| 93 | 92 | sqcld 14167 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛↑2) ∈
ℂ) |
| 94 | 93 | mullidd 11258 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1
· (𝑛↑2)) =
(𝑛↑2)) |
| 95 | 94 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛↑2) = (1 · (𝑛↑2))) |
| 96 | | 2cnd 12323 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 2 ∈
ℂ) |
| 97 | 96, 92 | mulcld 11260 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (2
· 𝑛) ∈
ℂ) |
| 98 | | 1cnd 11235 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → 1 ∈
ℂ) |
| 99 | 92, 97, 98 | adddid 11264 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = ((𝑛 · (2 · 𝑛)) + (𝑛 · 1))) |
| 100 | 92, 96, 92 | mul12d 11449 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛 · 𝑛))) |
| 101 | 92 | sqvald 14166 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛)) |
| 102 | 101 | eqcomd 2742 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (𝑛 · 𝑛) = (𝑛↑2)) |
| 103 | 102 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 · 𝑛)) = (2 · (𝑛↑2))) |
| 104 | 100, 103 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛↑2))) |
| 105 | 92 | mulridd 11257 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛) |
| 106 | 104, 105 | oveq12d 7428 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)) = ((2 · (𝑛↑2)) + 𝑛)) |
| 107 | | 2ne0 12349 |
. . . . . . . . . . . . . . . . . 18
⊢ 2 ≠
0 |
| 108 | 107 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 2 ≠
0) |
| 109 | 92, 96, 108 | divcan2d 12024 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (2
· (𝑛 / 2)) = 𝑛) |
| 110 | 109 | eqcomd 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 = (2 · (𝑛 / 2))) |
| 111 | 110 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((2
· (𝑛↑2)) +
𝑛) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2)))) |
| 112 | 92 | halfcld 12491 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛 / 2) ∈
ℂ) |
| 113 | 96, 93, 112 | adddid 11264 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (2
· ((𝑛↑2) +
(𝑛 / 2))) = ((2 ·
(𝑛↑2)) + (2 ·
(𝑛 / 2)))) |
| 114 | 111, 113 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((2
· (𝑛↑2)) +
𝑛) = (2 · ((𝑛↑2) + (𝑛 / 2)))) |
| 115 | 99, 106, 114 | 3eqtrd 2775 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = (2 · ((𝑛↑2) + (𝑛 / 2)))) |
| 116 | 95, 115 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2))))) |
| 117 | 93, 112 | addcld 11259 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℂ) |
| 118 | | nnrp 13025 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
| 119 | | 2z 12629 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℤ |
| 120 | 119 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → 2 ∈
ℤ) |
| 121 | 118, 120 | rpexpcld 14270 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛↑2) ∈
ℝ+) |
| 122 | 118 | rphalfcld 13068 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝑛 / 2) ∈
ℝ+) |
| 123 | 121, 122 | rpaddcld 13071 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈
ℝ+) |
| 124 | 123 | rpne0d 13061 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ≠ 0) |
| 125 | 98, 96, 93, 117, 108, 124 | divmuldivd 12063 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((1 / 2)
· ((𝑛↑2) /
((𝑛↑2) + (𝑛 / 2)))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2))))) |
| 126 | 93, 112 | pncand 11600 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) = (𝑛↑2)) |
| 127 | 126 | eqcomd 2742 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (𝑛↑2) = (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2))) |
| 128 | 127 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2)))) |
| 129 | 117, 112,
117, 124 | divsubdird 12061 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))) |
| 130 | 117, 124 | dividd 12020 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = 1) |
| 131 | 130 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))) |
| 132 | 128, 129,
131 | 3eqtrd 2775 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))) |
| 133 | | nnne0 12279 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → 𝑛 ≠ 0) |
| 134 | 96, 92, 133 | divcld 12022 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (2 /
𝑛) ∈
ℂ) |
| 135 | 96, 92, 108, 133 | divne0d 12038 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (2 /
𝑛) ≠ 0) |
| 136 | 112, 117,
134, 124, 135 | divcan5rd 12049 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) |
| 137 | 92, 96, 133, 108 | divcan6d 12041 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) · (2 / 𝑛)) = 1) |
| 138 | 93, 112, 134 | adddird 11265 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛)))) |
| 139 | 93, 96, 92, 133 | div12d 12058 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · ((𝑛↑2) / 𝑛))) |
| 140 | | 1e2m1 12372 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 = (2
− 1) |
| 141 | 140 | oveq2i 7421 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛↑1) = (𝑛↑(2 − 1)) |
| 142 | 92 | exp1d 14164 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛) |
| 143 | 92, 133, 120 | expm1d 14179 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℕ → (𝑛↑(2 − 1)) = ((𝑛↑2) / 𝑛)) |
| 144 | 141, 142,
143 | 3eqtr3a 2795 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ℕ → 𝑛 = ((𝑛↑2) / 𝑛)) |
| 145 | 144 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛) |
| 146 | 145 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ ℕ → (2
· ((𝑛↑2) /
𝑛)) = (2 · 𝑛)) |
| 147 | 139, 146 | eqtrd 2771 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · 𝑛)) |
| 148 | 147, 137 | oveq12d 7428 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))) = ((2 · 𝑛) + 1)) |
| 149 | 138, 148 | eqtrd 2771 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = ((2 · 𝑛) + 1)) |
| 150 | 137, 149 | oveq12d 7428 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = (1 / ((2 · 𝑛) + 1))) |
| 151 | 136, 150 | eqtr3d 2773 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))) = (1 / ((2 · 𝑛) + 1))) |
| 152 | 151 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ → (1
− ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − (1 / ((2 · 𝑛) + 1)))) |
| 153 | 132, 152 | eqtrd 2771 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − (1 / ((2 · 𝑛) + 1)))) |
| 154 | 153 | oveq2d 7426 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → ((1 / 2)
· ((𝑛↑2) /
((𝑛↑2) + (𝑛 / 2)))) = ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1))))) |
| 155 | 116, 125,
154 | 3eqtr2d 2777 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 / 2) · (1 − (1 /
((2 · 𝑛) +
1))))) |
| 156 | 155 | mpteq2ia 5221 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1))))) |
| 157 | 86, 156 | eqtri 2759 |
. . . . . . . 8
⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1))))) |
| 158 | 157 | a1i 11 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1
− (1 / ((2 · 𝑛) + 1)))))) |
| 159 | 69 | oveq2d 7426 |
. . . . . . 7
⊢ ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((1 / 2) · (1 − (1 /
((2 · 𝑛) + 1)))) =
((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1))))) |
| 160 | 70 | halfcld 12491 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → (1 / 2)
∈ ℂ) |
| 161 | 160, 76 | mulcld 11260 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((1 / 2)
· (1 − (1 / ((2 · 𝑘) + 1)))) ∈ ℂ) |
| 162 | 158, 159,
17, 161 | fvmptd 6998 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝐻‘𝑘) = ((1 / 2) · (1 − (1 / ((2
· 𝑘) +
1))))) |
| 163 | 77 | oveq2d 7426 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → ((1 / 2)
· (𝐹‘𝑘)) = ((1 / 2) · (1
− (1 / ((2 · 𝑘) + 1))))) |
| 164 | 162, 163 | eqtr4d 2774 |
. . . . 5
⊢ (𝑘 ∈ ℕ → (𝐻‘𝑘) = ((1 / 2) · (𝐹‘𝑘))) |
| 165 | 164 | adantl 481 |
. . . 4
⊢
((⊤ ∧ 𝑘
∈ ℕ) → (𝐻‘𝑘) = ((1 / 2) · (𝐹‘𝑘))) |
| 166 | 1, 2, 84, 85, 89, 91, 165 | climmulc2 15658 |
. . 3
⊢ (⊤
→ 𝐻 ⇝ ((1 / 2)
· 1)) |
| 167 | 166 | mptru 1547 |
. 2
⊢ 𝐻 ⇝ ((1 / 2) ·
1) |
| 168 | | halfcn 12460 |
. . 3
⊢ (1 / 2)
∈ ℂ |
| 169 | 168 | mulridi 11244 |
. 2
⊢ ((1 / 2)
· 1) = (1 / 2) |
| 170 | 167, 169 | breqtri 5149 |
1
⊢ 𝐻 ⇝ (1 /
2) |