Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem1 Structured version   Visualization version   GIF version

Theorem stirlinglem1 46182
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem1.1 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem1.2 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
stirlinglem1.3 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
stirlinglem1.4 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
stirlinglem1 𝐻 ⇝ (1 / 2)

Proof of Theorem stirlinglem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12775 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12503 . . . 4 (⊤ → 1 ∈ ℤ)
3 stirlinglem1.4 . . . . . . . . 9 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
4 ax-1cn 11064 . . . . . . . . . 10 1 ∈ ℂ
5 divcnv 15760 . . . . . . . . . 10 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
64, 5ax-mp 5 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0
73, 6eqbrtri 5110 . . . . . . . 8 𝐿 ⇝ 0
87a1i 11 . . . . . . 7 (⊤ → 𝐿 ⇝ 0)
9 stirlinglem1.3 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
10 nnex 12131 . . . . . . . . . 10 ℕ ∈ V
1110mptex 7157 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
129, 11eqeltri 2827 . . . . . . . 8 𝐺 ∈ V
1312a1i 11 . . . . . . 7 (⊤ → 𝐺 ∈ V)
143a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
15 simpr 484 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1615oveq2d 7362 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 𝑛) = (1 / 𝑘))
17 id 22 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
18 nnrp 12902 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1918rpreccld 12944 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
2014, 16, 17, 19fvmptd 6936 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐿𝑘) = (1 / 𝑘))
21 nnrecre 12167 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
2220, 21eqeltrd 2831 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐿𝑘) ∈ ℝ)
2322adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
249a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
2515oveq2d 7362 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
2625oveq1d 7361 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2726oveq2d 7362 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
28 2re 12199 . . . . . . . . . . . . . 14 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ)
30 nnre 12132 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3129, 30remulcld 11142 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
32 0le2 12227 . . . . . . . . . . . . . 14 0 ≤ 2
3332a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 2)
3418rpge0d 12938 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
3529, 30, 33, 34mulge0d 11694 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (2 · 𝑘))
3631, 35ge0p1rpd 12964 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ+)
3736rpreccld 12944 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
3824, 27, 17, 37fvmptd 6936 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
3937rpred 12934 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
4038, 39eqeltrd 2831 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
4140adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
42 1red 11113 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
43 0le1 11640 . . . . . . . . . . 11 0 ≤ 1
4443a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 ≤ 1)
4531, 42readdcld 11141 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
46 nncn 12133 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746mullidd 11130 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) = 𝑘)
48 1lt2 12291 . . . . . . . . . . . . . . 15 1 < 2
4948a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 1 < 2)
5042, 29, 18, 49ltmul1dd 12989 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) < (2 · 𝑘))
5147, 50eqbrtrrd 5113 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 < (2 · 𝑘))
5231ltp1d 12052 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
5330, 31, 45, 51, 52lttrd 11274 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 < ((2 · 𝑘) + 1))
5430, 45, 53ltled 11261 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≤ ((2 · 𝑘) + 1))
5518, 36, 42, 44, 54lediv2ad 12956 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5655, 38, 203brtr4d 5121 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
5756adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
5837rpge0d 12938 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5958, 38breqtrrd 5117 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (𝐺𝑘))
6059adantl 481 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
611, 2, 8, 13, 23, 41, 57, 60climsqz2 15549 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
62 1cnd 11107 . . . . . 6 (⊤ → 1 ∈ ℂ)
63 stirlinglem1.2 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
6410mptex 7157 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V
6563, 64eqeltri 2827 . . . . . . 7 𝐹 ∈ V
6665a1i 11 . . . . . 6 (⊤ → 𝐹 ∈ V)
6741recnd 11140 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
6863a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
6927oveq2d 7362 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / ((2 · 𝑘) + 1))))
70 1cnd 11107 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℂ)
71 2cnd 12203 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℂ)
7271, 46mulcld 11132 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
7372, 70addcld 11131 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7436rpne0d 12939 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
7573, 74reccld 11890 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
7670, 75subcld 11472 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) ∈ ℂ)
7768, 69, 17, 76fvmptd 6936 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (1 / ((2 · 𝑘) + 1))))
7838eqcomd 2737 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) = (𝐺𝑘))
7978oveq2d 7362 . . . . . . . 8 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) = (1 − (𝐺𝑘)))
8077, 79eqtrd 2766 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (𝐺𝑘)))
8180adantl 481 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (1 − (𝐺𝑘)))
821, 2, 61, 62, 66, 67, 81climsubc2 15546 . . . . 5 (⊤ → 𝐹 ⇝ (1 − 0))
83 1m0e1 12241 . . . . 5 (1 − 0) = 1
8482, 83breqtrdi 5130 . . . 4 (⊤ → 𝐹 ⇝ 1)
8562halfcld 12366 . . . 4 (⊤ → (1 / 2) ∈ ℂ)
86 stirlinglem1.1 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
8710mptex 7157 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ V
8886, 87eqeltri 2827 . . . . 5 𝐻 ∈ V
8988a1i 11 . . . 4 (⊤ → 𝐻 ∈ V)
9077, 76eqeltrd 2831 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
9190adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
92 nncn 12133 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
9392sqcld 14051 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
9493mullidd 11130 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 · (𝑛↑2)) = (𝑛↑2))
9594eqcomd 2737 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑2) = (1 · (𝑛↑2)))
96 2cnd 12203 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
9796, 92mulcld 11132 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
98 1cnd 11107 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 1 ∈ ℂ)
9992, 97, 98adddid 11136 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)))
10092, 96, 92mul12d 11322 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛 · 𝑛)))
10192sqvald 14050 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛))
102101eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 · 𝑛) = (𝑛↑2))
103102oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · (𝑛 · 𝑛)) = (2 · (𝑛↑2)))
104100, 103eqtrd 2766 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛↑2)))
10592mulridd 11129 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
106104, 105oveq12d 7364 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)) = ((2 · (𝑛↑2)) + 𝑛))
107 2ne0 12229 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 2 ≠ 0)
10992, 96, 108divcan2d 11899 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 · (𝑛 / 2)) = 𝑛)
110109eqcomd 2737 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 = (2 · (𝑛 / 2)))
111110oveq2d 7362 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
11292halfcld 12366 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℂ)
11396, 93, 112adddid 11136 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) + (𝑛 / 2))) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
114111, 113eqtr4d 2769 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11599, 106, 1143eqtrd 2770 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11695, 115oveq12d 7364 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
11793, 112addcld 11131 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℂ)
118 nnrp 12902 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119 2z 12504 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
120119a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℤ)
121118, 120rpexpcld 14154 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℝ+)
122118rphalfcld 12946 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℝ+)
123121, 122rpaddcld 12949 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℝ+)
124123rpne0d 12939 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ≠ 0)
12598, 96, 93, 117, 108, 124divmuldivd 11938 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
12693, 112pncand 11473 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) = (𝑛↑2))
127126eqcomd 2737 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑2) = (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)))
128127oveq1d 7361 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))))
129117, 112, 117, 124divsubdird 11936 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
130117, 124dividd 11895 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = 1)
131130oveq1d 7361 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
132128, 129, 1313eqtrd 2770 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
133 nnne0 12159 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
13496, 92, 133divcld 11897 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ∈ ℂ)
13596, 92, 108, 133divne0d 11913 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ≠ 0)
136112, 117, 134, 124, 135divcan5rd 11924 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))
13792, 96, 133, 108divcan6d 11916 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / 2) · (2 / 𝑛)) = 1)
13893, 112, 134adddird 11137 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))))
13993, 96, 92, 133div12d 11933 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · ((𝑛↑2) / 𝑛)))
140 1e2m1 12247 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (2 − 1)
141140oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛↑1) = (𝑛↑(2 − 1))
14292exp1d 14048 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
14392, 133, 120expm1d 14063 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑(2 − 1)) = ((𝑛↑2) / 𝑛))
144141, 142, 1433eqtr3a 2790 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 = ((𝑛↑2) / 𝑛))
145144eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛)
146145oveq2d 7362 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) / 𝑛)) = (2 · 𝑛))
147139, 146eqtrd 2766 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · 𝑛))
148147, 137oveq12d 7364 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))) = ((2 · 𝑛) + 1))
149138, 148eqtrd 2766 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = ((2 · 𝑛) + 1))
150137, 149oveq12d 7364 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = (1 / ((2 · 𝑛) + 1)))
151136, 150eqtr3d 2768 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))) = (1 / ((2 · 𝑛) + 1)))
152151oveq2d 7362 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − (1 / ((2 · 𝑛) + 1))))
153132, 152eqtrd 2766 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − (1 / ((2 · 𝑛) + 1))))
154153oveq2d 7362 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
155116, 125, 1543eqtr2d 2772 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
156155mpteq2ia 5184 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
15786, 156eqtri 2754 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
158157a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1))))))
15969oveq2d 7362 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16070halfcld 12366 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 2) ∈ ℂ)
161160, 76mulcld 11132 . . . . . . 7 (𝑘 ∈ ℕ → ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))) ∈ ℂ)
162158, 159, 17, 161fvmptd 6936 . . . . . 6 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16377oveq2d 7362 . . . . . 6 (𝑘 ∈ ℕ → ((1 / 2) · (𝐹𝑘)) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
164162, 163eqtr4d 2769 . . . . 5 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
165164adantl 481 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
1661, 2, 84, 85, 89, 91, 165climmulc2 15544 . . 3 (⊤ → 𝐻 ⇝ ((1 / 2) · 1))
167166mptru 1548 . 2 𝐻 ⇝ ((1 / 2) · 1)
168 halfcn 12335 . . 3 (1 / 2) ∈ ℂ
169168mulridi 11116 . 2 ((1 / 2) · 1) = (1 / 2)
170167, 169breqtri 5114 1 𝐻 ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wtru 1542  wcel 2111  wne 2928  Vcvv 3436   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  cz 12468  +crp 12890  cexp 13968  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fl 13696  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396
This theorem is referenced by:  stirlinglem15  46196
  Copyright terms: Public domain W3C validator