Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem1 Structured version   Visualization version   GIF version

Theorem stirlinglem1 42716
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem1.1 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem1.2 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
stirlinglem1.3 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
stirlinglem1.4 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
stirlinglem1 𝐻 ⇝ (1 / 2)

Proof of Theorem stirlinglem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12269 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12001 . . . 4 (⊤ → 1 ∈ ℤ)
3 stirlinglem1.4 . . . . . . . . 9 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
4 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
5 divcnv 15200 . . . . . . . . . 10 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
64, 5ax-mp 5 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0
73, 6eqbrtri 5051 . . . . . . . 8 𝐿 ⇝ 0
87a1i 11 . . . . . . 7 (⊤ → 𝐿 ⇝ 0)
9 stirlinglem1.3 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
10 nnex 11631 . . . . . . . . . 10 ℕ ∈ V
1110mptex 6963 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
129, 11eqeltri 2886 . . . . . . . 8 𝐺 ∈ V
1312a1i 11 . . . . . . 7 (⊤ → 𝐺 ∈ V)
143a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
15 simpr 488 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1615oveq2d 7151 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 𝑛) = (1 / 𝑘))
17 id 22 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
18 nnrp 12388 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1918rpreccld 12429 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
2014, 16, 17, 19fvmptd 6752 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐿𝑘) = (1 / 𝑘))
21 nnrecre 11667 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
2220, 21eqeltrd 2890 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐿𝑘) ∈ ℝ)
2322adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
249a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
2515oveq2d 7151 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
2625oveq1d 7150 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2726oveq2d 7151 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
28 2re 11699 . . . . . . . . . . . . . 14 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ)
30 nnre 11632 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3129, 30remulcld 10660 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
32 0le2 11727 . . . . . . . . . . . . . 14 0 ≤ 2
3332a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 2)
3418rpge0d 12423 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
3529, 30, 33, 34mulge0d 11206 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (2 · 𝑘))
3631, 35ge0p1rpd 12449 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ+)
3736rpreccld 12429 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
3824, 27, 17, 37fvmptd 6752 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
3937rpred 12419 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
4038, 39eqeltrd 2890 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
4140adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
42 1red 10631 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
43 0le1 11152 . . . . . . . . . . 11 0 ≤ 1
4443a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 ≤ 1)
4531, 42readdcld 10659 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
46 nncn 11633 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746mulid2d 10648 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) = 𝑘)
48 1lt2 11796 . . . . . . . . . . . . . . 15 1 < 2
4948a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 1 < 2)
5042, 29, 18, 49ltmul1dd 12474 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) < (2 · 𝑘))
5147, 50eqbrtrrd 5054 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 < (2 · 𝑘))
5231ltp1d 11559 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
5330, 31, 45, 51, 52lttrd 10790 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 < ((2 · 𝑘) + 1))
5430, 45, 53ltled 10777 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≤ ((2 · 𝑘) + 1))
5518, 36, 42, 44, 54lediv2ad 12441 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5655, 38, 203brtr4d 5062 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
5756adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
5837rpge0d 12423 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5958, 38breqtrrd 5058 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (𝐺𝑘))
6059adantl 485 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
611, 2, 8, 13, 23, 41, 57, 60climsqz2 14990 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
62 1cnd 10625 . . . . . 6 (⊤ → 1 ∈ ℂ)
63 stirlinglem1.2 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
6410mptex 6963 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V
6563, 64eqeltri 2886 . . . . . . 7 𝐹 ∈ V
6665a1i 11 . . . . . 6 (⊤ → 𝐹 ∈ V)
6741recnd 10658 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
6863a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
6927oveq2d 7151 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / ((2 · 𝑘) + 1))))
70 1cnd 10625 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℂ)
71 2cnd 11703 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℂ)
7271, 46mulcld 10650 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
7372, 70addcld 10649 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7436rpne0d 12424 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
7573, 74reccld 11398 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
7670, 75subcld 10986 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) ∈ ℂ)
7768, 69, 17, 76fvmptd 6752 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (1 / ((2 · 𝑘) + 1))))
7838eqcomd 2804 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) = (𝐺𝑘))
7978oveq2d 7151 . . . . . . . 8 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) = (1 − (𝐺𝑘)))
8077, 79eqtrd 2833 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (𝐺𝑘)))
8180adantl 485 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (1 − (𝐺𝑘)))
821, 2, 61, 62, 66, 67, 81climsubc2 14987 . . . . 5 (⊤ → 𝐹 ⇝ (1 − 0))
83 1m0e1 11746 . . . . 5 (1 − 0) = 1
8482, 83breqtrdi 5071 . . . 4 (⊤ → 𝐹 ⇝ 1)
8562halfcld 11870 . . . 4 (⊤ → (1 / 2) ∈ ℂ)
86 stirlinglem1.1 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
8710mptex 6963 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ V
8886, 87eqeltri 2886 . . . . 5 𝐻 ∈ V
8988a1i 11 . . . 4 (⊤ → 𝐻 ∈ V)
9077, 76eqeltrd 2890 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
9190adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
92 nncn 11633 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
9392sqcld 13504 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
9493mulid2d 10648 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 · (𝑛↑2)) = (𝑛↑2))
9594eqcomd 2804 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑2) = (1 · (𝑛↑2)))
96 2cnd 11703 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
9796, 92mulcld 10650 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
98 1cnd 10625 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 1 ∈ ℂ)
9992, 97, 98adddid 10654 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)))
10092, 96, 92mul12d 10838 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛 · 𝑛)))
10192sqvald 13503 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛))
102101eqcomd 2804 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 · 𝑛) = (𝑛↑2))
103102oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · (𝑛 · 𝑛)) = (2 · (𝑛↑2)))
104100, 103eqtrd 2833 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛↑2)))
10592mulid1d 10647 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
106104, 105oveq12d 7153 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)) = ((2 · (𝑛↑2)) + 𝑛))
107 2ne0 11729 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 2 ≠ 0)
10992, 96, 108divcan2d 11407 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 · (𝑛 / 2)) = 𝑛)
110109eqcomd 2804 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 = (2 · (𝑛 / 2)))
111110oveq2d 7151 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
11292halfcld 11870 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℂ)
11396, 93, 112adddid 10654 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) + (𝑛 / 2))) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
114111, 113eqtr4d 2836 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11599, 106, 1143eqtrd 2837 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11695, 115oveq12d 7153 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
11793, 112addcld 10649 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℂ)
118 nnrp 12388 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119 2z 12002 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
120119a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℤ)
121118, 120rpexpcld 13604 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℝ+)
122118rphalfcld 12431 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℝ+)
123121, 122rpaddcld 12434 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℝ+)
124123rpne0d 12424 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ≠ 0)
12598, 96, 93, 117, 108, 124divmuldivd 11446 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
12693, 112pncand 10987 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) = (𝑛↑2))
127126eqcomd 2804 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑2) = (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)))
128127oveq1d 7150 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))))
129117, 112, 117, 124divsubdird 11444 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
130117, 124dividd 11403 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = 1)
131130oveq1d 7150 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
132128, 129, 1313eqtrd 2837 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
133 nnne0 11659 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
13496, 92, 133divcld 11405 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ∈ ℂ)
13596, 92, 108, 133divne0d 11421 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ≠ 0)
136112, 117, 134, 124, 135divcan5rd 11432 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))
13792, 96, 133, 108divcan6d 11424 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / 2) · (2 / 𝑛)) = 1)
13893, 112, 134adddird 10655 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))))
13993, 96, 92, 133div12d 11441 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · ((𝑛↑2) / 𝑛)))
140 1e2m1 11752 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (2 − 1)
141140oveq2i 7146 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛↑1) = (𝑛↑(2 − 1))
14292exp1d 13501 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
14392, 133, 120expm1d 13516 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑(2 − 1)) = ((𝑛↑2) / 𝑛))
144141, 142, 1433eqtr3a 2857 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 = ((𝑛↑2) / 𝑛))
145144eqcomd 2804 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛)
146145oveq2d 7151 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) / 𝑛)) = (2 · 𝑛))
147139, 146eqtrd 2833 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · 𝑛))
148147, 137oveq12d 7153 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))) = ((2 · 𝑛) + 1))
149138, 148eqtrd 2833 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = ((2 · 𝑛) + 1))
150137, 149oveq12d 7153 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = (1 / ((2 · 𝑛) + 1)))
151136, 150eqtr3d 2835 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))) = (1 / ((2 · 𝑛) + 1)))
152151oveq2d 7151 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − (1 / ((2 · 𝑛) + 1))))
153132, 152eqtrd 2833 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − (1 / ((2 · 𝑛) + 1))))
154153oveq2d 7151 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
155116, 125, 1543eqtr2d 2839 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
156155mpteq2ia 5121 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
15786, 156eqtri 2821 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
158157a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1))))))
15969oveq2d 7151 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16070halfcld 11870 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 2) ∈ ℂ)
161160, 76mulcld 10650 . . . . . . 7 (𝑘 ∈ ℕ → ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))) ∈ ℂ)
162158, 159, 17, 161fvmptd 6752 . . . . . 6 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16377oveq2d 7151 . . . . . 6 (𝑘 ∈ ℕ → ((1 / 2) · (𝐹𝑘)) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
164162, 163eqtr4d 2836 . . . . 5 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
165164adantl 485 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
1661, 2, 84, 85, 89, 91, 165climmulc2 14985 . . 3 (⊤ → 𝐻 ⇝ ((1 / 2) · 1))
167166mptru 1545 . 2 𝐻 ⇝ ((1 / 2) · 1)
168 halfcn 11840 . . 3 (1 / 2) ∈ ℂ
169168mulid1i 10634 . 2 ((1 / 2) · 1) = (1 / 2)
170167, 169breqtri 5055 1 𝐻 ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wtru 1539  wcel 2111  wne 2987  Vcvv 3441   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  cz 11969  +crp 12377  cexp 13425  cli 14833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13157  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838
This theorem is referenced by:  stirlinglem15  42730
  Copyright terms: Public domain W3C validator