Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem1 Structured version   Visualization version   GIF version

Theorem stirlinglem1 44305
Description: A simple limit of fractions is computed. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem1.1 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem1.2 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
stirlinglem1.3 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
stirlinglem1.4 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
Assertion
Ref Expression
stirlinglem1 𝐻 ⇝ (1 / 2)

Proof of Theorem stirlinglem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12534 . . . 4 (⊤ → 1 ∈ ℤ)
3 stirlinglem1.4 . . . . . . . . 9 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
4 ax-1cn 11109 . . . . . . . . . 10 1 ∈ ℂ
5 divcnv 15738 . . . . . . . . . 10 (1 ∈ ℂ → (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0)
64, 5ax-mp 5 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) ⇝ 0
73, 6eqbrtri 5126 . . . . . . . 8 𝐿 ⇝ 0
87a1i 11 . . . . . . 7 (⊤ → 𝐿 ⇝ 0)
9 stirlinglem1.3 . . . . . . . . 9 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
10 nnex 12159 . . . . . . . . . 10 ℕ ∈ V
1110mptex 7173 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) ∈ V
129, 11eqeltri 2834 . . . . . . . 8 𝐺 ∈ V
1312a1i 11 . . . . . . 7 (⊤ → 𝐺 ∈ V)
143a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐿 = (𝑛 ∈ ℕ ↦ (1 / 𝑛)))
15 simpr 485 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
1615oveq2d 7373 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / 𝑛) = (1 / 𝑘))
17 id 22 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
18 nnrp 12926 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
1918rpreccld 12967 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ+)
2014, 16, 17, 19fvmptd 6955 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐿𝑘) = (1 / 𝑘))
21 nnrecre 12195 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
2220, 21eqeltrd 2838 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐿𝑘) ∈ ℝ)
2322adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐿𝑘) ∈ ℝ)
249a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝐺 = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))))
2515oveq2d 7373 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
2625oveq1d 7372 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((2 · 𝑛) + 1) = ((2 · 𝑘) + 1))
2726oveq2d 7373 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 / ((2 · 𝑛) + 1)) = (1 / ((2 · 𝑘) + 1)))
28 2re 12227 . . . . . . . . . . . . . 14 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ)
30 nnre 12160 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
3129, 30remulcld 11185 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ)
32 0le2 12255 . . . . . . . . . . . . . 14 0 ≤ 2
3332a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 2)
3418rpge0d 12961 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
3529, 30, 33, 34mulge0d 11732 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 0 ≤ (2 · 𝑘))
3631, 35ge0p1rpd 12987 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ+)
3736rpreccld 12967 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ+)
3824, 27, 17, 37fvmptd 6955 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝐺𝑘) = (1 / ((2 · 𝑘) + 1)))
3937rpred 12957 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℝ)
4038, 39eqeltrd 2838 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
4140adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
42 1red 11156 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℝ)
43 0le1 11678 . . . . . . . . . . 11 0 ≤ 1
4443a1i 11 . . . . . . . . . 10 (𝑘 ∈ ℕ → 0 ≤ 1)
4531, 42readdcld 11184 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℝ)
46 nncn 12161 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
4746mulid2d 11173 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) = 𝑘)
48 1lt2 12324 . . . . . . . . . . . . . . 15 1 < 2
4948a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 1 < 2)
5042, 29, 18, 49ltmul1dd 13012 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (1 · 𝑘) < (2 · 𝑘))
5147, 50eqbrtrrd 5129 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 < (2 · 𝑘))
5231ltp1d 12085 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) < ((2 · 𝑘) + 1))
5330, 31, 45, 51, 52lttrd 11316 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 < ((2 · 𝑘) + 1))
5430, 45, 53ltled 11303 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ≤ ((2 · 𝑘) + 1))
5518, 36, 42, 44, 54lediv2ad 12979 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ≤ (1 / 𝑘))
5655, 38, 203brtr4d 5137 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐿𝑘))
5756adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐿𝑘))
5837rpge0d 12961 . . . . . . . . 9 (𝑘 ∈ ℕ → 0 ≤ (1 / ((2 · 𝑘) + 1)))
5958, 38breqtrrd 5133 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ (𝐺𝑘))
6059adantl 482 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝐺𝑘))
611, 2, 8, 13, 23, 41, 57, 60climsqz2 15524 . . . . . 6 (⊤ → 𝐺 ⇝ 0)
62 1cnd 11150 . . . . . 6 (⊤ → 1 ∈ ℂ)
63 stirlinglem1.2 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
6410mptex 7173 . . . . . . . 8 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) ∈ V
6563, 64eqeltri 2834 . . . . . . 7 𝐹 ∈ V
6665a1i 11 . . . . . 6 (⊤ → 𝐹 ∈ V)
6741recnd 11183 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℂ)
6863a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝐹 = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))))
6927oveq2d 7373 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (1 − (1 / ((2 · 𝑛) + 1))) = (1 − (1 / ((2 · 𝑘) + 1))))
70 1cnd 11150 . . . . . . . . . 10 (𝑘 ∈ ℕ → 1 ∈ ℂ)
71 2cnd 12231 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℂ)
7271, 46mulcld 11175 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
7372, 70addcld 11174 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ∈ ℂ)
7436rpne0d 12962 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((2 · 𝑘) + 1) ≠ 0)
7573, 74reccld 11924 . . . . . . . . . 10 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) ∈ ℂ)
7670, 75subcld 11512 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) ∈ ℂ)
7768, 69, 17, 76fvmptd 6955 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (1 / ((2 · 𝑘) + 1))))
7838eqcomd 2742 . . . . . . . . 9 (𝑘 ∈ ℕ → (1 / ((2 · 𝑘) + 1)) = (𝐺𝑘))
7978oveq2d 7373 . . . . . . . 8 (𝑘 ∈ ℕ → (1 − (1 / ((2 · 𝑘) + 1))) = (1 − (𝐺𝑘)))
8077, 79eqtrd 2776 . . . . . . 7 (𝑘 ∈ ℕ → (𝐹𝑘) = (1 − (𝐺𝑘)))
8180adantl 482 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = (1 − (𝐺𝑘)))
821, 2, 61, 62, 66, 67, 81climsubc2 15521 . . . . 5 (⊤ → 𝐹 ⇝ (1 − 0))
83 1m0e1 12274 . . . . 5 (1 − 0) = 1
8482, 83breqtrdi 5146 . . . 4 (⊤ → 𝐹 ⇝ 1)
8562halfcld 12398 . . . 4 (⊤ → (1 / 2) ∈ ℂ)
86 stirlinglem1.1 . . . . . 6 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
8710mptex 7173 . . . . . 6 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ V
8886, 87eqeltri 2834 . . . . 5 𝐻 ∈ V
8988a1i 11 . . . 4 (⊤ → 𝐻 ∈ V)
9077, 76eqeltrd 2838 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℂ)
9190adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
92 nncn 12161 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
9392sqcld 14049 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
9493mulid2d 11173 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 · (𝑛↑2)) = (𝑛↑2))
9594eqcomd 2742 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛↑2) = (1 · (𝑛↑2)))
96 2cnd 12231 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
9796, 92mulcld 11175 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
98 1cnd 11150 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 1 ∈ ℂ)
9992, 97, 98adddid 11179 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)))
10092, 96, 92mul12d 11364 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛 · 𝑛)))
10192sqvald 14048 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛))
102101eqcomd 2742 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 · 𝑛) = (𝑛↑2))
103102oveq2d 7373 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · (𝑛 · 𝑛)) = (2 · (𝑛↑2)))
104100, 103eqtrd 2776 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · (2 · 𝑛)) = (2 · (𝑛↑2)))
10592mulid1d 11172 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
106104, 105oveq12d 7375 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 · (2 · 𝑛)) + (𝑛 · 1)) = ((2 · (𝑛↑2)) + 𝑛))
107 2ne0 12257 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 2 ≠ 0)
10992, 96, 108divcan2d 11933 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 · (𝑛 / 2)) = 𝑛)
110109eqcomd 2742 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 = (2 · (𝑛 / 2)))
111110oveq2d 7373 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
11292halfcld 12398 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℂ)
11396, 93, 112adddid 11179 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) + (𝑛 / 2))) = ((2 · (𝑛↑2)) + (2 · (𝑛 / 2))))
114111, 113eqtr4d 2779 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((2 · (𝑛↑2)) + 𝑛) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11599, 106, 1143eqtrd 2780 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) = (2 · ((𝑛↑2) + (𝑛 / 2))))
11695, 115oveq12d 7375 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
11793, 112addcld 11174 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℂ)
118 nnrp 12926 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
119 2z 12535 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
120119a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℤ)
121118, 120rpexpcld 14150 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℝ+)
122118rphalfcld 12969 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / 2) ∈ ℝ+)
123121, 122rpaddcld 12972 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ∈ ℝ+)
124123rpne0d 12962 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) + (𝑛 / 2)) ≠ 0)
12598, 96, 93, 117, 108, 124divmuldivd 11972 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 · (𝑛↑2)) / (2 · ((𝑛↑2) + (𝑛 / 2)))))
12693, 112pncand 11513 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) = (𝑛↑2))
127126eqcomd 2742 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (𝑛↑2) = (((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)))
128127oveq1d 7372 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))))
129117, 112, 117, 124divsubdird 11970 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) − (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
130117, 124dividd 11929 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) = 1)
131130oveq1d 7372 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑2) + (𝑛 / 2)) / ((𝑛↑2) + (𝑛 / 2))) − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
132128, 129, 1313eqtrd 2780 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))))
133 nnne0 12187 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
13496, 92, 133divcld 11931 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ∈ ℂ)
13596, 92, 108, 133divne0d 11947 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (2 / 𝑛) ≠ 0)
136112, 117, 134, 124, 135divcan5rd 11958 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))))
13792, 96, 133, 108divcan6d 11950 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / 2) · (2 / 𝑛)) = 1)
13893, 112, 134adddird 11180 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))))
13993, 96, 92, 133div12d 11967 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · ((𝑛↑2) / 𝑛)))
140 1e2m1 12280 . . . . . . . . . . . . . . . . . . . . . . 23 1 = (2 − 1)
141140oveq2i 7368 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛↑1) = (𝑛↑(2 − 1))
14292exp1d 14046 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑1) = 𝑛)
14392, 133, 120expm1d 14061 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (𝑛↑(2 − 1)) = ((𝑛↑2) / 𝑛))
144141, 142, 1433eqtr3a 2800 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 = ((𝑛↑2) / 𝑛))
145144eqcomd 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛)
146145oveq2d 7373 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (2 · ((𝑛↑2) / 𝑛)) = (2 · 𝑛))
147139, 146eqtrd 2776 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) · (2 / 𝑛)) = (2 · 𝑛))
148147, 137oveq12d 7375 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (((𝑛↑2) · (2 / 𝑛)) + ((𝑛 / 2) · (2 / 𝑛))) = ((2 · 𝑛) + 1))
149138, 148eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛)) = ((2 · 𝑛) + 1))
150137, 149oveq12d 7375 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / 2) · (2 / 𝑛)) / (((𝑛↑2) + (𝑛 / 2)) · (2 / 𝑛))) = (1 / ((2 · 𝑛) + 1)))
151136, 150eqtr3d 2778 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2))) = (1 / ((2 · 𝑛) + 1)))
152151oveq2d 7373 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 − ((𝑛 / 2) / ((𝑛↑2) + (𝑛 / 2)))) = (1 − (1 / ((2 · 𝑛) + 1))))
153132, 152eqtrd 2776 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2))) = (1 − (1 / ((2 · 𝑛) + 1))))
154153oveq2d 7373 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((1 / 2) · ((𝑛↑2) / ((𝑛↑2) + (𝑛 / 2)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
155116, 125, 1543eqtr2d 2782 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) = ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
156155mpteq2ia 5208 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
15786, 156eqtri 2764 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))))
158157a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → 𝐻 = (𝑛 ∈ ℕ ↦ ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1))))))
15969oveq2d 7373 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((1 / 2) · (1 − (1 / ((2 · 𝑛) + 1)))) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16070halfcld 12398 . . . . . . . 8 (𝑘 ∈ ℕ → (1 / 2) ∈ ℂ)
161160, 76mulcld 11175 . . . . . . 7 (𝑘 ∈ ℕ → ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))) ∈ ℂ)
162158, 159, 17, 161fvmptd 6955 . . . . . 6 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
16377oveq2d 7373 . . . . . 6 (𝑘 ∈ ℕ → ((1 / 2) · (𝐹𝑘)) = ((1 / 2) · (1 − (1 / ((2 · 𝑘) + 1)))))
164162, 163eqtr4d 2779 . . . . 5 (𝑘 ∈ ℕ → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
165164adantl 482 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐻𝑘) = ((1 / 2) · (𝐹𝑘)))
1661, 2, 84, 85, 89, 91, 165climmulc2 15519 . . 3 (⊤ → 𝐻 ⇝ ((1 / 2) · 1))
167166mptru 1548 . 2 𝐻 ⇝ ((1 / 2) · 1)
168 halfcn 12368 . . 3 (1 / 2) ∈ ℂ
169168mulid1i 11159 . 2 ((1 / 2) · 1) = (1 / 2)
170167, 169breqtri 5130 1 𝐻 ⇝ (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  Vcvv 3445   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  +crp 12915  cexp 13967  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371
This theorem is referenced by:  stirlinglem15  44319
  Copyright terms: Public domain W3C validator