![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > log2le1 | Structured version Visualization version GIF version |
Description: log2 is less than 1. This is just a weaker form of log2ub 26831 when no tight upper bound is required. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
log2le1 | ⊢ (log‘2) < 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | log2ub 26831 | . 2 ⊢ (log‘2) < (;;253 / ;;365) | |
2 | 2nn0 12490 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
3 | 3nn0 12491 | . . . . 5 ⊢ 3 ∈ ℕ0 | |
4 | 5nn0 12493 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
5 | 6nn0 12494 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
6 | 2lt3 12385 | . . . . 5 ⊢ 2 < 3 | |
7 | 5lt10 12813 | . . . . 5 ⊢ 5 < ;10 | |
8 | 3lt10 12815 | . . . . 5 ⊢ 3 < ;10 | |
9 | 2, 3, 4, 5, 3, 4, 6, 7, 8 | 3decltc 12711 | . . . 4 ⊢ ;;253 < ;;365 |
10 | 2, 4 | deccl 12693 | . . . . . . 7 ⊢ ;25 ∈ ℕ0 |
11 | 10, 3 | deccl 12693 | . . . . . 6 ⊢ ;;253 ∈ ℕ0 |
12 | 11 | nn0rei 12484 | . . . . 5 ⊢ ;;253 ∈ ℝ |
13 | 3, 5 | deccl 12693 | . . . . . . 7 ⊢ ;36 ∈ ℕ0 |
14 | 13, 4 | deccl 12693 | . . . . . 6 ⊢ ;;365 ∈ ℕ0 |
15 | 14 | nn0rei 12484 | . . . . 5 ⊢ ;;365 ∈ ℝ |
16 | 6nn 12302 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
17 | 3, 16 | decnncl 12698 | . . . . . 6 ⊢ ;36 ∈ ℕ |
18 | 0nn0 12488 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
19 | 10pos 12695 | . . . . . 6 ⊢ 0 < ;10 | |
20 | 17, 4, 18, 19 | declti 12716 | . . . . 5 ⊢ 0 < ;;365 |
21 | 12, 15, 15, 20 | ltdiv1ii 12144 | . . . 4 ⊢ (;;253 < ;;365 ↔ (;;253 / ;;365) < (;;365 / ;;365)) |
22 | 9, 21 | mpbi 229 | . . 3 ⊢ (;;253 / ;;365) < (;;365 / ;;365) |
23 | 15 | recni 11229 | . . . 4 ⊢ ;;365 ∈ ℂ |
24 | 0re 11217 | . . . . 5 ⊢ 0 ∈ ℝ | |
25 | 24, 20 | gtneii 11327 | . . . 4 ⊢ ;;365 ≠ 0 |
26 | 23, 25 | dividi 11948 | . . 3 ⊢ (;;365 / ;;365) = 1 |
27 | 22, 26 | breqtri 5166 | . 2 ⊢ (;;253 / ;;365) < 1 |
28 | 2rp 12982 | . . . 4 ⊢ 2 ∈ ℝ+ | |
29 | relogcl 26459 | . . . 4 ⊢ (2 ∈ ℝ+ → (log‘2) ∈ ℝ) | |
30 | 28, 29 | ax-mp 5 | . . 3 ⊢ (log‘2) ∈ ℝ |
31 | 12, 15, 25 | redivcli 11982 | . . 3 ⊢ (;;253 / ;;365) ∈ ℝ |
32 | 1re 11215 | . . 3 ⊢ 1 ∈ ℝ | |
33 | 30, 31, 32 | lttri 11341 | . 2 ⊢ (((log‘2) < (;;253 / ;;365) ∧ (;;253 / ;;365) < 1) → (log‘2) < 1) |
34 | 1, 27, 33 | mp2an 689 | 1 ⊢ (log‘2) < 1 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 class class class wbr 5141 ‘cfv 6536 (class class class)co 7404 ℝcr 11108 0cc0 11109 1c1 11110 < clt 11249 / cdiv 11872 2c2 12268 3c3 12269 5c5 12271 6c6 12272 ;cdc 12678 ℝ+crp 12977 logclog 26438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-xnn0 12546 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ioc 13332 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-mod 13838 df-seq 13970 df-exp 14030 df-fac 14236 df-bc 14265 df-hash 14293 df-shft 15017 df-cj 15049 df-re 15050 df-im 15051 df-sqrt 15185 df-abs 15186 df-limsup 15418 df-clim 15435 df-rlim 15436 df-sum 15636 df-ef 16014 df-sin 16016 df-cos 16017 df-tan 16018 df-pi 16019 df-dvds 16202 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-sca 17219 df-vsca 17220 df-ip 17221 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-hom 17227 df-cco 17228 df-rest 17374 df-topn 17375 df-0g 17393 df-gsum 17394 df-topgen 17395 df-pt 17396 df-prds 17399 df-xrs 17454 df-qtop 17459 df-imas 17460 df-xps 17462 df-mre 17536 df-mrc 17537 df-acs 17539 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-mulg 18993 df-cntz 19230 df-cmn 19699 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-fbas 21232 df-fg 21233 df-cnfld 21236 df-top 22746 df-topon 22763 df-topsp 22785 df-bases 22799 df-cld 22873 df-ntr 22874 df-cls 22875 df-nei 22952 df-lp 22990 df-perf 22991 df-cn 23081 df-cnp 23082 df-haus 23169 df-cmp 23241 df-tx 23416 df-hmeo 23609 df-fil 23700 df-fm 23792 df-flim 23793 df-flf 23794 df-xms 24176 df-ms 24177 df-tms 24178 df-cncf 24748 df-limc 25745 df-dv 25746 df-ulm 26263 df-log 26440 df-atan 26749 |
This theorem is referenced by: emgt0 26889 hgt750lemd 34188 |
Copyright terms: Public domain | W3C validator |