![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm3adifii | Structured version Visualization version GIF version |
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
Ref | Expression |
---|---|
norm3adifii | ⊢ (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | norm3dif.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
2 | norm3dif.3 | . . . . . . . 8 ⊢ 𝐶 ∈ ℋ | |
3 | 1, 2 | hvsubcli 30743 | . . . . . . 7 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
4 | 3 | normcli 30853 | . . . . . 6 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ∈ ℝ |
5 | 4 | recni 11225 | . . . . 5 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ∈ ℂ |
6 | norm3dif.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℋ | |
7 | 6, 2 | hvsubcli 30743 | . . . . . . 7 ⊢ (𝐵 −ℎ 𝐶) ∈ ℋ |
8 | 7 | normcli 30853 | . . . . . 6 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ∈ ℝ |
9 | 8 | recni 11225 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ∈ ℂ |
10 | 5, 9 | negsubdi2i 11543 | . . . 4 ⊢ -((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) = ((normℎ‘(𝐵 −ℎ 𝐶)) − (normℎ‘(𝐴 −ℎ 𝐶))) |
11 | 6, 2, 1 | norm3difi 30869 | . . . . . 6 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ≤ ((normℎ‘(𝐵 −ℎ 𝐴)) + (normℎ‘(𝐴 −ℎ 𝐶))) |
12 | 6, 1 | normsubi 30863 | . . . . . . 7 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) = (normℎ‘(𝐴 −ℎ 𝐵)) |
13 | 12 | oveq1i 7411 | . . . . . 6 ⊢ ((normℎ‘(𝐵 −ℎ 𝐴)) + (normℎ‘(𝐴 −ℎ 𝐶))) = ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐴 −ℎ 𝐶))) |
14 | 11, 13 | breqtri 5163 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐴 −ℎ 𝐶))) |
15 | 1, 6 | hvsubcli 30743 | . . . . . . 7 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
16 | 15 | normcli 30853 | . . . . . 6 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ∈ ℝ |
17 | 8, 4, 16 | lesubaddi 11769 | . . . . 5 ⊢ (((normℎ‘(𝐵 −ℎ 𝐶)) − (normℎ‘(𝐴 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (normℎ‘(𝐵 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐴 −ℎ 𝐶)))) |
18 | 14, 17 | mpbir 230 | . . . 4 ⊢ ((normℎ‘(𝐵 −ℎ 𝐶)) − (normℎ‘(𝐴 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
19 | 10, 18 | eqbrtri 5159 | . . 3 ⊢ -((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
20 | 4, 8 | resubcli 11519 | . . . 4 ⊢ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ∈ ℝ |
21 | 20, 16 | lenegcon1i 11763 | . . 3 ⊢ (-((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ -(normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) |
22 | 19, 21 | mpbi 229 | . 2 ⊢ -(normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) |
23 | 1, 2, 6 | norm3difi 30869 | . . 3 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐵 −ℎ 𝐶))) |
24 | 4, 8, 16 | lesubaddi 11769 | . . 3 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (normℎ‘(𝐴 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐵 −ℎ 𝐶)))) |
25 | 23, 24 | mpbir 230 | . 2 ⊢ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
26 | 20, 16 | abslei 15335 | . 2 ⊢ ((abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (-(normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ∧ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)))) |
27 | 22, 25, 26 | mpbir2an 708 | 1 ⊢ (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 + caddc 11109 ≤ cle 11246 − cmin 11441 -cneg 11442 abscabs 15178 ℋchba 30641 normℎcno 30645 −ℎ cmv 30647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-hfvadd 30722 ax-hvcom 30723 ax-hvass 30724 ax-hv0cl 30725 ax-hvaddid 30726 ax-hfvmul 30727 ax-hvmulid 30728 ax-hvmulass 30729 ax-hvdistr1 30730 ax-hvdistr2 30731 ax-hvmul0 30732 ax-hfi 30801 ax-his1 30804 ax-his2 30805 ax-his3 30806 ax-his4 30807 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-hnorm 30690 df-hvsub 30693 |
This theorem is referenced by: norm3adifi 30875 |
Copyright terms: Public domain | W3C validator |