| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3adifii | Structured version Visualization version GIF version | ||
| Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| Ref | Expression |
|---|---|
| norm3adifii | ⊢ (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.3 | . . . . . . . 8 ⊢ 𝐶 ∈ ℋ | |
| 3 | 1, 2 | hvsubcli 30999 | . . . . . . 7 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 4 | 3 | normcli 31109 | . . . . . 6 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ∈ ℝ |
| 5 | 4 | recni 11126 | . . . . 5 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ∈ ℂ |
| 6 | norm3dif.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℋ | |
| 7 | 6, 2 | hvsubcli 30999 | . . . . . . 7 ⊢ (𝐵 −ℎ 𝐶) ∈ ℋ |
| 8 | 7 | normcli 31109 | . . . . . 6 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ∈ ℝ |
| 9 | 8 | recni 11126 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ∈ ℂ |
| 10 | 5, 9 | negsubdi2i 11447 | . . . 4 ⊢ -((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) = ((normℎ‘(𝐵 −ℎ 𝐶)) − (normℎ‘(𝐴 −ℎ 𝐶))) |
| 11 | 6, 2, 1 | norm3difi 31125 | . . . . . 6 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ≤ ((normℎ‘(𝐵 −ℎ 𝐴)) + (normℎ‘(𝐴 −ℎ 𝐶))) |
| 12 | 6, 1 | normsubi 31119 | . . . . . . 7 ⊢ (normℎ‘(𝐵 −ℎ 𝐴)) = (normℎ‘(𝐴 −ℎ 𝐵)) |
| 13 | 12 | oveq1i 7356 | . . . . . 6 ⊢ ((normℎ‘(𝐵 −ℎ 𝐴)) + (normℎ‘(𝐴 −ℎ 𝐶))) = ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐴 −ℎ 𝐶))) |
| 14 | 11, 13 | breqtri 5116 | . . . . 5 ⊢ (normℎ‘(𝐵 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐴 −ℎ 𝐶))) |
| 15 | 1, 6 | hvsubcli 30999 | . . . . . . 7 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
| 16 | 15 | normcli 31109 | . . . . . 6 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ∈ ℝ |
| 17 | 8, 4, 16 | lesubaddi 11675 | . . . . 5 ⊢ (((normℎ‘(𝐵 −ℎ 𝐶)) − (normℎ‘(𝐴 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (normℎ‘(𝐵 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐴 −ℎ 𝐶)))) |
| 18 | 14, 17 | mpbir 231 | . . . 4 ⊢ ((normℎ‘(𝐵 −ℎ 𝐶)) − (normℎ‘(𝐴 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
| 19 | 10, 18 | eqbrtri 5112 | . . 3 ⊢ -((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
| 20 | 4, 8 | resubcli 11423 | . . . 4 ⊢ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ∈ ℝ |
| 21 | 20, 16 | lenegcon1i 11669 | . . 3 ⊢ (-((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ -(normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) |
| 22 | 19, 21 | mpbi 230 | . 2 ⊢ -(normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) |
| 23 | 1, 2, 6 | norm3difi 31125 | . . 3 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐵 −ℎ 𝐶))) |
| 24 | 4, 8, 16 | lesubaddi 11675 | . . 3 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (normℎ‘(𝐴 −ℎ 𝐶)) ≤ ((normℎ‘(𝐴 −ℎ 𝐵)) + (normℎ‘(𝐵 −ℎ 𝐶)))) |
| 25 | 23, 24 | mpbir 231 | . 2 ⊢ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
| 26 | 20, 16 | abslei 15299 | . 2 ⊢ ((abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) ↔ (-(normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ∧ ((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)))) |
| 27 | 22, 25, 26 | mpbir2an 711 | 1 ⊢ (abs‘((normℎ‘(𝐴 −ℎ 𝐶)) − (normℎ‘(𝐵 −ℎ 𝐶)))) ≤ (normℎ‘(𝐴 −ℎ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 + caddc 11009 ≤ cle 11147 − cmin 11344 -cneg 11345 abscabs 15141 ℋchba 30897 normℎcno 30901 −ℎ cmv 30903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-hfvadd 30978 ax-hvcom 30979 ax-hvass 30980 ax-hv0cl 30981 ax-hvaddid 30982 ax-hfvmul 30983 ax-hvmulid 30984 ax-hvmulass 30985 ax-hvdistr1 30986 ax-hvdistr2 30987 ax-hvmul0 30988 ax-hfi 31057 ax-his1 31060 ax-his2 31061 ax-his3 31062 ax-his4 31063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-hnorm 30946 df-hvsub 30949 |
| This theorem is referenced by: norm3adifi 31131 |
| Copyright terms: Public domain | W3C validator |