HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3adifii Structured version   Visualization version   GIF version

Theorem norm3adifii 31110
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3adifii (abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(𝐴 𝐵))

Proof of Theorem norm3adifii
StepHypRef Expression
1 norm3dif.1 . . . . . . . 8 𝐴 ∈ ℋ
2 norm3dif.3 . . . . . . . 8 𝐶 ∈ ℋ
31, 2hvsubcli 30983 . . . . . . 7 (𝐴 𝐶) ∈ ℋ
43normcli 31093 . . . . . 6 (norm‘(𝐴 𝐶)) ∈ ℝ
54recni 11148 . . . . 5 (norm‘(𝐴 𝐶)) ∈ ℂ
6 norm3dif.2 . . . . . . . 8 𝐵 ∈ ℋ
76, 2hvsubcli 30983 . . . . . . 7 (𝐵 𝐶) ∈ ℋ
87normcli 31093 . . . . . 6 (norm‘(𝐵 𝐶)) ∈ ℝ
98recni 11148 . . . . 5 (norm‘(𝐵 𝐶)) ∈ ℂ
105, 9negsubdi2i 11468 . . . 4 -((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) = ((norm‘(𝐵 𝐶)) − (norm‘(𝐴 𝐶)))
116, 2, 1norm3difi 31109 . . . . . 6 (norm‘(𝐵 𝐶)) ≤ ((norm‘(𝐵 𝐴)) + (norm‘(𝐴 𝐶)))
126, 1normsubi 31103 . . . . . . 7 (norm‘(𝐵 𝐴)) = (norm‘(𝐴 𝐵))
1312oveq1i 7363 . . . . . 6 ((norm‘(𝐵 𝐴)) + (norm‘(𝐴 𝐶))) = ((norm‘(𝐴 𝐵)) + (norm‘(𝐴 𝐶)))
1411, 13breqtri 5120 . . . . 5 (norm‘(𝐵 𝐶)) ≤ ((norm‘(𝐴 𝐵)) + (norm‘(𝐴 𝐶)))
151, 6hvsubcli 30983 . . . . . . 7 (𝐴 𝐵) ∈ ℋ
1615normcli 31093 . . . . . 6 (norm‘(𝐴 𝐵)) ∈ ℝ
178, 4, 16lesubaddi 11696 . . . . 5 (((norm‘(𝐵 𝐶)) − (norm‘(𝐴 𝐶))) ≤ (norm‘(𝐴 𝐵)) ↔ (norm‘(𝐵 𝐶)) ≤ ((norm‘(𝐴 𝐵)) + (norm‘(𝐴 𝐶))))
1814, 17mpbir 231 . . . 4 ((norm‘(𝐵 𝐶)) − (norm‘(𝐴 𝐶))) ≤ (norm‘(𝐴 𝐵))
1910, 18eqbrtri 5116 . . 3 -((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ≤ (norm‘(𝐴 𝐵))
204, 8resubcli 11444 . . . 4 ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ∈ ℝ
2120, 16lenegcon1i 11690 . . 3 (-((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ≤ (norm‘(𝐴 𝐵)) ↔ -(norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))))
2219, 21mpbi 230 . 2 -(norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))
231, 2, 6norm3difi 31109 . . 3 (norm‘(𝐴 𝐶)) ≤ ((norm‘(𝐴 𝐵)) + (norm‘(𝐵 𝐶)))
244, 8, 16lesubaddi 11696 . . 3 (((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ≤ (norm‘(𝐴 𝐵)) ↔ (norm‘(𝐴 𝐶)) ≤ ((norm‘(𝐴 𝐵)) + (norm‘(𝐵 𝐶))))
2523, 24mpbir 231 . 2 ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ≤ (norm‘(𝐴 𝐵))
2620, 16abslei 15317 . 2 ((abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(𝐴 𝐵)) ↔ (-(norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ∧ ((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶))) ≤ (norm‘(𝐴 𝐵))))
2722, 25, 26mpbir2an 711 1 (abs‘((norm‘(𝐴 𝐶)) − (norm‘(𝐵 𝐶)))) ≤ (norm‘(𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353   + caddc 11031  cle 11169  cmin 11365  -cneg 11366  abscabs 15159  chba 30881  normcno 30885   cmv 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-hnorm 30930  df-hvsub 30933
This theorem is referenced by:  norm3adifi  31115
  Copyright terms: Public domain W3C validator