Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > harmonicbnd3 | Structured version Visualization version GIF version |
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.) |
Ref | Expression |
---|---|
harmonicbnd3 | ⊢ (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12235 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | 0re 10978 | . . . . 5 ⊢ 0 ∈ ℝ | |
3 | emre 26153 | . . . . 5 ⊢ γ ∈ ℝ | |
4 | 2re 12047 | . . . . . . . . 9 ⊢ 2 ∈ ℝ | |
5 | ere 15796 | . . . . . . . . 9 ⊢ e ∈ ℝ | |
6 | egt2lt3 15913 | . . . . . . . . . 10 ⊢ (2 < e ∧ e < 3) | |
7 | 6 | simpli 484 | . . . . . . . . 9 ⊢ 2 < e |
8 | 4, 5, 7 | ltleii 11098 | . . . . . . . 8 ⊢ 2 ≤ e |
9 | 2rp 12734 | . . . . . . . . 9 ⊢ 2 ∈ ℝ+ | |
10 | epr 15915 | . . . . . . . . 9 ⊢ e ∈ ℝ+ | |
11 | logleb 25756 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ e ∈ ℝ+) → (2 ≤ e ↔ (log‘2) ≤ (log‘e))) | |
12 | 9, 10, 11 | mp2an 689 | . . . . . . . 8 ⊢ (2 ≤ e ↔ (log‘2) ≤ (log‘e)) |
13 | 8, 12 | mpbi 229 | . . . . . . 7 ⊢ (log‘2) ≤ (log‘e) |
14 | loge 25740 | . . . . . . 7 ⊢ (log‘e) = 1 | |
15 | 13, 14 | breqtri 5104 | . . . . . 6 ⊢ (log‘2) ≤ 1 |
16 | 1re 10976 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
17 | relogcl 25729 | . . . . . . . 8 ⊢ (2 ∈ ℝ+ → (log‘2) ∈ ℝ) | |
18 | 9, 17 | ax-mp 5 | . . . . . . 7 ⊢ (log‘2) ∈ ℝ |
19 | 16, 18 | subge0i 11528 | . . . . . 6 ⊢ (0 ≤ (1 − (log‘2)) ↔ (log‘2) ≤ 1) |
20 | 15, 19 | mpbir 230 | . . . . 5 ⊢ 0 ≤ (1 − (log‘2)) |
21 | 3 | leidi 11509 | . . . . 5 ⊢ γ ≤ γ |
22 | iccss 13146 | . . . . 5 ⊢ (((0 ∈ ℝ ∧ γ ∈ ℝ) ∧ (0 ≤ (1 − (log‘2)) ∧ γ ≤ γ)) → ((1 − (log‘2))[,]γ) ⊆ (0[,]γ)) | |
23 | 2, 3, 20, 21, 22 | mp4an 690 | . . . 4 ⊢ ((1 − (log‘2))[,]γ) ⊆ (0[,]γ) |
24 | harmonicbnd2 26152 | . . . 4 ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ)) | |
25 | 23, 24 | sselid 3924 | . . 3 ⊢ (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) |
26 | oveq2 7279 | . . . . . . . . 9 ⊢ (𝑁 = 0 → (1...𝑁) = (1...0)) | |
27 | fz10 13276 | . . . . . . . . 9 ⊢ (1...0) = ∅ | |
28 | 26, 27 | eqtrdi 2796 | . . . . . . . 8 ⊢ (𝑁 = 0 → (1...𝑁) = ∅) |
29 | 28 | sumeq1d 15411 | . . . . . . 7 ⊢ (𝑁 = 0 → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) = Σ𝑚 ∈ ∅ (1 / 𝑚)) |
30 | sum0 15431 | . . . . . . 7 ⊢ Σ𝑚 ∈ ∅ (1 / 𝑚) = 0 | |
31 | 29, 30 | eqtrdi 2796 | . . . . . 6 ⊢ (𝑁 = 0 → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) = 0) |
32 | fv0p1e1 12096 | . . . . . . 7 ⊢ (𝑁 = 0 → (log‘(𝑁 + 1)) = (log‘1)) | |
33 | log1 25739 | . . . . . . 7 ⊢ (log‘1) = 0 | |
34 | 32, 33 | eqtrdi 2796 | . . . . . 6 ⊢ (𝑁 = 0 → (log‘(𝑁 + 1)) = 0) |
35 | 31, 34 | oveq12d 7289 | . . . . 5 ⊢ (𝑁 = 0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) = (0 − 0)) |
36 | 0m0e0 12093 | . . . . 5 ⊢ (0 − 0) = 0 | |
37 | 35, 36 | eqtrdi 2796 | . . . 4 ⊢ (𝑁 = 0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) = 0) |
38 | 2 | leidi 11509 | . . . . 5 ⊢ 0 ≤ 0 |
39 | emgt0 26154 | . . . . . 6 ⊢ 0 < γ | |
40 | 2, 3, 39 | ltleii 11098 | . . . . 5 ⊢ 0 ≤ γ |
41 | 2, 3 | elicc2i 13144 | . . . . 5 ⊢ (0 ∈ (0[,]γ) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ γ)) |
42 | 2, 38, 40, 41 | mpbir3an 1340 | . . . 4 ⊢ 0 ∈ (0[,]γ) |
43 | 37, 42 | eqeltrdi 2849 | . . 3 ⊢ (𝑁 = 0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) |
44 | 25, 43 | jaoi 854 | . 2 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) |
45 | 1, 44 | sylbi 216 | 1 ⊢ (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∅c0 4262 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 < clt 11010 ≤ cle 11011 − cmin 11205 / cdiv 11632 ℕcn 11973 2c2 12028 3c3 12029 ℕ0cn0 12233 ℝ+crp 12729 [,]cicc 13081 ...cfz 13238 Σcsu 15395 eceu 15770 logclog 25708 γcem 26139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-inf2 9377 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-addf 10951 ax-mulf 10952 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-2o 8289 df-oadd 8292 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-fi 9148 df-sup 9179 df-inf 9180 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12437 df-uz 12582 df-q 12688 df-rp 12730 df-xneg 12847 df-xadd 12848 df-xmul 12849 df-ioo 13082 df-ioc 13083 df-ico 13084 df-icc 13085 df-fz 13239 df-fzo 13382 df-fl 13510 df-mod 13588 df-seq 13720 df-exp 13781 df-fac 13986 df-bc 14015 df-hash 14043 df-shft 14776 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-limsup 15178 df-clim 15195 df-rlim 15196 df-sum 15396 df-ef 15775 df-e 15776 df-sin 15777 df-cos 15778 df-tan 15779 df-pi 15780 df-dvds 15962 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-starv 16975 df-sca 16976 df-vsca 16977 df-ip 16978 df-tset 16979 df-ple 16980 df-ds 16982 df-unif 16983 df-hom 16984 df-cco 16985 df-rest 17131 df-topn 17132 df-0g 17150 df-gsum 17151 df-topgen 17152 df-pt 17153 df-prds 17156 df-xrs 17211 df-qtop 17216 df-imas 17217 df-xps 17219 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-submnd 18429 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-psmet 20587 df-xmet 20588 df-met 20589 df-bl 20590 df-mopn 20591 df-fbas 20592 df-fg 20593 df-cnfld 20596 df-top 22041 df-topon 22058 df-topsp 22080 df-bases 22094 df-cld 22168 df-ntr 22169 df-cls 22170 df-nei 22247 df-lp 22285 df-perf 22286 df-cn 22376 df-cnp 22377 df-haus 22464 df-cmp 22536 df-tx 22711 df-hmeo 22904 df-fil 22995 df-fm 23087 df-flim 23088 df-flf 23089 df-xms 23471 df-ms 23472 df-tms 23473 df-cncf 24039 df-limc 25028 df-dv 25029 df-ulm 25534 df-log 25710 df-atan 26015 df-em 26140 |
This theorem is referenced by: harmoniclbnd 26156 harmonicbnd4 26158 logdivbnd 26702 |
Copyright terms: Public domain | W3C validator |