Colors of
variables: wff
setvar class |
Syntax hints:
∈ wcel 2106 ≠ wne 2940
class class class wbr 5147 (class class class)co 7405
ℝcr 11105 0cc0 11106
1c1 11107 · cmul 11111
< clt 11244 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 |
This theorem is referenced by: 0le1
11733 eqneg
11930 elimgt0
12048 ltp1
12050 ltm1
12052 recgt0
12056 mulgt1
12069 reclt1
12105 recgt1
12106 recgt1i
12107 recp1lt1
12108 recreclt
12109 recgt0ii
12116 inelr
12198 nnge1
12236 nngt0
12239 0nnnALT
12245 nnrecgt0
12251 2pos
12311 3pos
12313 4pos
12315 5pos
12317 6pos
12318 7pos
12319 8pos
12320 9pos
12321 neg1lt0
12325 halflt1
12426 nn0p1gt0
12497 elnnnn0c
12513 elnnz1
12584 nn0lt10b
12620 recnz
12633 1rp
12974 divlt1lt
13039 divle1le
13040 ledivge1le
13041 nnledivrp
13082 xmulrid
13254 0nelfz1
13516 fz10
13518 fzpreddisj
13546 elfznelfzob
13734 1mod
13864 expgt1
14062 ltexp2a
14127 expcan
14130 ltexp2
14131 leexp2
14132 leexp2a
14133 expnbnd
14191 expnlbnd
14192 expnlbnd2
14193 expmulnbnd
14194 discr1
14198 bcn1
14269 hashnn0n0nn
14347 s2fv0
14834 swrd2lsw
14899 2swrd2eqwrdeq
14900 sgn1
15035 resqrex
15193 mulcn2
15536 cvgrat
15825 bpoly4
15999 cos1bnd
16126 sin01gt0
16129 sincos1sgn
16132 ruclem8
16176 p1modz1
16200 nnoddm1d2
16325 sadcadd
16395 dvdsnprmd
16623 isprm7
16641 divdenle
16681 43prm
17051 plendxnocndx
17325 ipostr
18478 srgbinomlem4
20045 abvtrivd
20440 gzrngunit
21003 znidomb
21108 psgnodpmr
21134 thlleOLD
21243 leordtval2
22707 mopnex
24019 dscopn
24073 metnrmlem1a
24365 xrhmph
24454 evth
24466 xlebnum
24472 vitalilem5
25120 vitali
25121 ply1remlem
25671 plyremlem
25808 plyrem
25809 vieta1lem2
25815 reeff1olem
25949 sinhalfpilem
25964 rplogcl
26103 logtayllem
26158 cxplt
26193 cxple
26194 atanlogaddlem
26407 ressatans
26428 rlimcnp
26459 rlimcnp2
26460 cxp2limlem
26469 cxp2lim
26470 cxploglim2
26472 amgmlem
26483 emcllem2
26490 harmonicubnd
26503 fsumharmonic
26505 zetacvg
26508 ftalem1
26566 ftalem2
26567 chpchtsum
26711 chpub
26712 mersenne
26719 perfectlem2
26722 efexple
26773 chebbnd1
26964 dchrmusumlema
26985 dchrvmasumlem2
26990 dchrvmasumiflem1
26993 dchrisum0flblem2
27001 dchrisum0lema
27006 dchrisum0lem1
27008 dchrisum0lem2a
27009 mulog2sumlem1
27026 chpdifbndlem1
27045 chpdifbnd
27047 selberg3lem1
27049 pntrmax
27056 pntrsumo1
27057 pntpbnd1a
27077 pntpbnd2
27079 pntibndlem1
27081 pntlem3
27101 pnt
27106 ostth2lem1
27110 ostth2lem3
27127 ostth2lem4
27128 axcontlem2
28212 wwlksn0s
29104 clwwlkf1
29291 esumcst
33049 hasheuni
33071 ballotlemi1
33489 ballotlemic
33493 sgnnbi
33532 sgnpbi
33533 sgnmulsgp
33537 signsply0
33550 signswch
33560 hgt750lem
33651 unblimceq0
35371 knoppndvlem1
35376 knoppndvlem2
35377 knoppndvlem7
35382 knoppndvlem13
35388 knoppndvlem14
35389 knoppndvlem15
35390 knoppndvlem17
35392 knoppndvlem20
35395 irrdiff
36195 poimirlem22
36498 poimirlem31
36507 asindmre
36559 areacirclem4
36567 60gcd7e1
40858 3lexlogpow5ineq2
40908 aks4d1p1p2
40923 aks4d1p7
40936 aks4d1p8d2
40938 aks4d1p8d3
40939 aks4d1p8
40940 aks4d1p9
40941 sticksstones11
40960 2xp3dxp2ge1d
41010 3cubeslem1
41407 pellexlem2
41553 pellexlem6
41557 pell14qrgt0
41582 elpell1qr2
41595 pellfundex
41609 pellfundrp
41611 rmxypos
41671 relexp01min
42449 imo72b2
42909 radcnvrat
43058 reclt0d
44083 sqrlearg
44252 sumnnodd
44332 liminf10ex
44476 liminfltlimsupex
44483 dvnmul
44645 stoweidlem7
44709 stoweidlem36
44738 stoweidlem38
44740 stoweidlem42
44744 stoweidlem51
44753 stoweidlem59
44761 stirlinglem5
44780 stirlinglem7
44782 stirlinglem10
44785 stirlinglem11
44786 stirlinglem12
44787 stirlinglem15
44790 dirkeritg
44804 fourierdlem11
44820 fourierdlem30
44839 fourierdlem47
44855 fourierdlem79
44887 fourierdlem103
44911 fourierdlem104
44912 fouriersw
44933 etransclem4
44940 etransclem31
44967 etransclem32
44968 etransclem35
44971 etransclem41
44977 salexct2
45041 hoidmvlelem1
45297 tworepnotupword
45586 m1mod0mod1
46023 nfermltl2rev
46397 m1modmmod
47160 regt1loggt0
47175 rege1logbrege0
47197 nnlog2ge0lt1
47205 eenglngeehlnmlem2
47377 amgmwlem
47802 |