| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lt1 | Structured version Visualization version GIF version | ||
| Description: 0 is less than 1. Theorem I.21 of [Apostol] p. 20. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| 0lt1 | ⊢ 0 < 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11244 | . . 3 ⊢ 1 ∈ ℝ | |
| 2 | ax-1ne0 11207 | . . 3 ⊢ 1 ≠ 0 | |
| 3 | msqgt0 11766 | . . 3 ⊢ ((1 ∈ ℝ ∧ 1 ≠ 0) → 0 < (1 · 1)) | |
| 4 | 1, 2, 3 | mp2an 692 | . 2 ⊢ 0 < (1 · 1) |
| 5 | ax-1cn 11196 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | 5 | mulridi 11248 | . 2 ⊢ (1 · 1) = 1 |
| 7 | 4, 6 | breqtri 5150 | 1 ⊢ 0 < 1 |
| Copyright terms: Public domain | W3C validator |