Proof of Theorem cdleme11dN
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) |
2 | | simp2 1135 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) |
3 | | simp32 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
4 | | simp33 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑈 ≤ (𝑆 ∨ 𝑇)) |
5 | | cdleme11.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
6 | | cdleme11.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
7 | | cdleme11.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
8 | | cdleme11.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | cdleme11.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
10 | | cdleme11.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
11 | 5, 6, 7, 8, 9, 10 | cdleme11c 38202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑃 ≤ (𝑆 ∨ 𝑇)) |
12 | 1, 2, 3, 4, 11 | syl112anc 1372 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑃 ≤ (𝑆 ∨ 𝑇)) |
13 | | simp11l 1282 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐾 ∈ HL) |
14 | | simp12l 1284 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑃 ∈ 𝐴) |
15 | | simp21l 1288 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ∈ 𝐴) |
16 | 5, 6, 8 | hlatlej2 37317 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
17 | 13, 14, 15, 16 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ≤ (𝑃 ∨ 𝑆)) |
18 | | breq2 5074 |
. . . . 5
⊢ ((𝑃 ∨ 𝑆) = (𝑃 ∨ 𝑇) → (𝑆 ≤ (𝑃 ∨ 𝑆) ↔ 𝑆 ≤ (𝑃 ∨ 𝑇))) |
19 | 17, 18 | syl5ibcom 244 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝑆) = (𝑃 ∨ 𝑇) → 𝑆 ≤ (𝑃 ∨ 𝑇))) |
20 | | simp22 1205 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑇 ∈ 𝐴) |
21 | | simp31 1207 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝑆 ≠ 𝑇) |
22 | 5, 6, 8 | hlatexch2 37337 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ 𝑆 ≠ 𝑇) → (𝑆 ≤ (𝑃 ∨ 𝑇) → 𝑃 ≤ (𝑆 ∨ 𝑇))) |
23 | 13, 15, 14, 20, 21, 22 | syl131anc 1381 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑆 ≤ (𝑃 ∨ 𝑇) → 𝑃 ≤ (𝑆 ∨ 𝑇))) |
24 | 19, 23 | syld 47 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝑆) = (𝑃 ∨ 𝑇) → 𝑃 ≤ (𝑆 ∨ 𝑇))) |
25 | 24 | necon3bd 2956 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (¬ 𝑃 ≤ (𝑆 ∨ 𝑇) → (𝑃 ∨ 𝑆) ≠ (𝑃 ∨ 𝑇))) |
26 | 12, 25 | mpd 15 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ 𝑆) ≠ (𝑃 ∨ 𝑇)) |