Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11e Structured version   Visualization version   GIF version

Theorem cdleme11e 39792
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 39799. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l ≀ = (leβ€˜πΎ)
cdleme11.j ∨ = (joinβ€˜πΎ)
cdleme11.m ∧ = (meetβ€˜πΎ)
cdleme11.a 𝐴 = (Atomsβ€˜πΎ)
cdleme11.h 𝐻 = (LHypβ€˜πΎ)
cdleme11.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme11.c 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
cdleme11.d 𝐷 = ((𝑃 ∨ 𝑇) ∧ π‘Š)
Assertion
Ref Expression
cdleme11e ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐢 β‰  𝐷)

Proof of Theorem cdleme11e
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simp22 1204 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ∈ 𝐴)
4 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š))
5 simp11l 1281 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ HL)
65hllatd 38892 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐾 ∈ Lat)
7 simp12l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 ∈ 𝐴)
8 eqid 2725 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
9 cdleme11.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
108, 9atbase 38817 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
117, 10syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
12 simp21l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ∈ 𝐴)
138, 9atbase 38817 . . . . 5 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1412, 13syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
158, 9atbase 38817 . . . . 5 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
163, 15syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
17 simp1 1133 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴))
18 simp2 1134 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄))
19 simp32 1207 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
20 simp33 1208 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ π‘ˆ ≀ (𝑆 ∨ 𝑇))
21 cdleme11.l . . . . . 6 ≀ = (leβ€˜πΎ)
22 cdleme11.j . . . . . 6 ∨ = (joinβ€˜πΎ)
23 cdleme11.m . . . . . 6 ∧ = (meetβ€˜πΎ)
24 cdleme11.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
25 cdleme11.u . . . . . 6 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
2621, 22, 23, 9, 24, 25cdleme11c 39790 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇))
2717, 18, 19, 20, 26syl112anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇))
288, 21, 22latnlej1r 18449 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇)) β†’ 𝑃 β‰  𝑇)
296, 11, 14, 16, 27, 28syl131anc 1380 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑃 β‰  𝑇)
30 simp31 1206 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝑆 β‰  𝑇)
3121, 22, 9hlatcon2 38981 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑃 ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑇))
325, 12, 3, 7, 30, 27, 31syl132anc 1385 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑇))
33 cdleme11.d . . . 4 𝐷 = ((𝑃 ∨ 𝑇) ∧ π‘Š)
34 cdleme11.c . . . 4 𝐢 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
3521, 22, 23, 9, 24, 33, 34cdleme0e 39746 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š)) ∧ (𝑃 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑇))) β†’ 𝐷 β‰  𝐢)
361, 2, 3, 4, 29, 32, 35syl132anc 1385 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐷 β‰  𝐢)
3736necomd 2986 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 β‰  𝑄) ∧ (𝑆 β‰  𝑇 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) β†’ 𝐢 β‰  𝐷)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Latclat 18422  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517
This theorem is referenced by:  cdleme11l  39798
  Copyright terms: Public domain W3C validator