Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme11e Structured version   Visualization version   GIF version

Theorem cdleme11e 40220
Description: Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40227. (Contributed by NM, 13-Jun-2012.)
Hypotheses
Ref Expression
cdleme11.l = (le‘𝐾)
cdleme11.j = (join‘𝐾)
cdleme11.m = (meet‘𝐾)
cdleme11.a 𝐴 = (Atoms‘𝐾)
cdleme11.h 𝐻 = (LHyp‘𝐾)
cdleme11.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme11.c 𝐶 = ((𝑃 𝑆) 𝑊)
cdleme11.d 𝐷 = ((𝑃 𝑇) 𝑊)
Assertion
Ref Expression
cdleme11e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐶𝐷)

Proof of Theorem cdleme11e
StepHypRef Expression
1 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp22 1207 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑇𝐴)
4 simp21 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
5 simp11l 1284 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ HL)
65hllatd 39320 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐾 ∈ Lat)
7 simp12l 1286 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝐴)
8 eqid 2740 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
9 cdleme11.a . . . . . 6 𝐴 = (Atoms‘𝐾)
108, 9atbase 39245 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
117, 10syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃 ∈ (Base‘𝐾))
12 simp21l 1290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆𝐴)
138, 9atbase 39245 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1412, 13syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆 ∈ (Base‘𝐾))
158, 9atbase 39245 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
163, 15syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑇 ∈ (Base‘𝐾))
17 simp1 1136 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴))
18 simp2 1137 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄))
19 simp32 1210 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑄))
20 simp33 1211 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑈 (𝑆 𝑇))
21 cdleme11.l . . . . . 6 = (le‘𝐾)
22 cdleme11.j . . . . . 6 = (join‘𝐾)
23 cdleme11.m . . . . . 6 = (meet‘𝐾)
24 cdleme11.h . . . . . 6 𝐻 = (LHyp‘𝐾)
25 cdleme11.u . . . . . 6 𝑈 = ((𝑃 𝑄) 𝑊)
2621, 22, 23, 9, 24, 25cdleme11c 40218 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))
2717, 18, 19, 20, 26syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑃 (𝑆 𝑇))
288, 21, 22latnlej1r 18528 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) ∧ ¬ 𝑃 (𝑆 𝑇)) → 𝑃𝑇)
296, 11, 14, 16, 27, 28syl131anc 1383 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑃𝑇)
30 simp31 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝑆𝑇)
3121, 22, 9hlatcon2 39409 . . . 4 ((𝐾 ∈ HL ∧ (𝑆𝐴𝑇𝐴𝑃𝐴) ∧ (𝑆𝑇 ∧ ¬ 𝑃 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑇))
325, 12, 3, 7, 30, 27, 31syl132anc 1388 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → ¬ 𝑆 (𝑃 𝑇))
33 cdleme11.d . . . 4 𝐷 = ((𝑃 𝑇) 𝑊)
34 cdleme11.c . . . 4 𝐶 = ((𝑃 𝑆) 𝑊)
3521, 22, 23, 9, 24, 33, 34cdleme0e 40174 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑇𝐴 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑃𝑇 ∧ ¬ 𝑆 (𝑃 𝑇))) → 𝐷𝐶)
361, 2, 3, 4, 29, 32, 35syl132anc 1388 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐷𝐶)
3736necomd 3002 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑇𝐴𝑃𝑄) ∧ (𝑆𝑇 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) → 𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  Latclat 18501  Atomscatm 39219  HLchlt 39306  LHypclh 39941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945
This theorem is referenced by:  cdleme11l  40226
  Copyright terms: Public domain W3C validator