![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme19f | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113, 5th paragraph on p. 114, line 3. π·, πΉ, π, π, πΊ, π represent s2, f(s), fs(r), t2, f(t), ft(r). We prove that if r β€ s β¨ t, then ft(r) = ft(r). (Contributed by NM, 14-Nov-2012.) |
Ref | Expression |
---|---|
cdleme19.l | β’ β€ = (leβπΎ) |
cdleme19.j | β’ β¨ = (joinβπΎ) |
cdleme19.m | β’ β§ = (meetβπΎ) |
cdleme19.a | β’ π΄ = (AtomsβπΎ) |
cdleme19.h | β’ π» = (LHypβπΎ) |
cdleme19.u | β’ π = ((π β¨ π) β§ π) |
cdleme19.f | β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
cdleme19.g | β’ πΊ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) |
cdleme19.d | β’ π· = ((π β¨ π) β§ π) |
cdleme19.y | β’ π = ((π β¨ π) β§ π) |
cdleme19.n | β’ π = ((π β¨ π) β§ (πΉ β¨ π·)) |
cdleme19.o | β’ π = ((π β¨ π) β§ (πΊ β¨ π)) |
Ref | Expression |
---|---|
cdleme19f | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π)))) β π = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme19.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | cdleme19.j | . . . 4 β’ β¨ = (joinβπΎ) | |
3 | cdleme19.m | . . . 4 β’ β§ = (meetβπΎ) | |
4 | cdleme19.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
5 | cdleme19.h | . . . 4 β’ π» = (LHypβπΎ) | |
6 | cdleme19.u | . . . 4 β’ π = ((π β¨ π) β§ π) | |
7 | cdleme19.f | . . . 4 β’ πΉ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) | |
8 | cdleme19.g | . . . 4 β’ πΊ = ((π β¨ π) β§ (π β¨ ((π β¨ π) β§ π))) | |
9 | cdleme19.d | . . . 4 β’ π· = ((π β¨ π) β§ π) | |
10 | cdleme19.y | . . . 4 β’ π = ((π β¨ π) β§ π) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdleme19e 39178 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π)))) β (πΉ β¨ π·) = (πΊ β¨ π)) |
12 | 11 | oveq2d 7425 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π)))) β ((π β¨ π) β§ (πΉ β¨ π·)) = ((π β¨ π) β§ (πΊ β¨ π))) |
13 | cdleme19.n | . 2 β’ π = ((π β¨ π) β§ (πΉ β¨ π·)) | |
14 | cdleme19.o | . 2 β’ π = ((π β¨ π) β§ (πΊ β¨ π)) | |
15 | 12, 13, 14 | 3eqtr4g 2798 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ π β π΄) β§ ((π β π β§ π β π) β§ (Β¬ π β€ (π β¨ π) β§ Β¬ π β€ (π β¨ π)) β§ (π β€ (π β¨ π) β§ π β€ (π β¨ π)))) β π = π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2941 class class class wbr 5149 βcfv 6544 (class class class)co 7409 lecple 17204 joincjn 18264 meetcmee 18265 Atomscatm 38133 HLchlt 38220 LHypclh 38855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-proset 18248 df-poset 18266 df-plt 18283 df-lub 18299 df-glb 18300 df-join 18301 df-meet 18302 df-p0 18378 df-p1 18379 df-lat 18385 df-clat 18452 df-oposet 38046 df-ol 38048 df-oml 38049 df-covers 38136 df-ats 38137 df-atl 38168 df-cvlat 38192 df-hlat 38221 df-llines 38369 df-lplanes 38370 df-lvols 38371 df-lines 38372 df-psubsp 38374 df-pmap 38375 df-padd 38667 df-lhyp 38859 |
This theorem is referenced by: cdleme20 39195 |
Copyright terms: Public domain | W3C validator |