Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme35h Structured version   Visualization version   GIF version

Theorem cdleme35h 38237
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one outside of 𝑃 𝑄 line. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013.)
Hypotheses
Ref Expression
cdleme35.l = (le‘𝐾)
cdleme35.j = (join‘𝐾)
cdleme35.m = (meet‘𝐾)
cdleme35.a 𝐴 = (Atoms‘𝐾)
cdleme35.h 𝐻 = (LHyp‘𝐾)
cdleme35.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme35.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
cdleme35.g 𝐺 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme35h ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → 𝑅 = 𝑆)

Proof of Theorem cdleme35h
StepHypRef Expression
1 oveq1 7239 . . . . 5 (𝐹 = 𝐺 → (𝐹 𝑈) = (𝐺 𝑈))
2 oveq2 7240 . . . . . . 7 (𝐹 = 𝐺 → (𝑄 𝐹) = (𝑄 𝐺))
32oveq1d 7247 . . . . . 6 (𝐹 = 𝐺 → ((𝑄 𝐹) 𝑊) = ((𝑄 𝐺) 𝑊))
43oveq2d 7248 . . . . 5 (𝐹 = 𝐺 → (𝑃 ((𝑄 𝐹) 𝑊)) = (𝑃 ((𝑄 𝐺) 𝑊)))
51, 4oveq12d 7250 . . . 4 (𝐹 = 𝐺 → ((𝐹 𝑈) (𝑃 ((𝑄 𝐹) 𝑊))) = ((𝐺 𝑈) (𝑃 ((𝑄 𝐺) 𝑊))))
653ad2ant3 1137 . . 3 ((¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺) → ((𝐹 𝑈) (𝑃 ((𝑄 𝐹) 𝑊))) = ((𝐺 𝑈) (𝑃 ((𝑄 𝐺) 𝑊))))
763ad2ant3 1137 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐹 𝑈) (𝑃 ((𝑄 𝐹) 𝑊))) = ((𝐺 𝑈) (𝑃 ((𝑄 𝐺) 𝑊))))
8 simp1 1138 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
9 simp21 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → 𝑃𝑄)
10 simp22 1209 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
11 simp31 1211 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → ¬ 𝑅 (𝑃 𝑄))
12 cdleme35.l . . . 4 = (le‘𝐾)
13 cdleme35.j . . . 4 = (join‘𝐾)
14 cdleme35.m . . . 4 = (meet‘𝐾)
15 cdleme35.a . . . 4 𝐴 = (Atoms‘𝐾)
16 cdleme35.h . . . 4 𝐻 = (LHyp‘𝐾)
17 cdleme35.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
18 cdleme35.f . . . 4 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
1912, 13, 14, 15, 16, 17, 18cdleme35g 38236 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝐹 𝑈) (𝑃 ((𝑄 𝐹) 𝑊))) = 𝑅)
208, 9, 10, 11, 19syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐹 𝑈) (𝑃 ((𝑄 𝐹) 𝑊))) = 𝑅)
21 simp23 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
22 simp32 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → ¬ 𝑆 (𝑃 𝑄))
23 cdleme35.g . . . 4 𝐺 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
2412, 13, 14, 15, 16, 17, 23cdleme35g 38236 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ ¬ 𝑆 (𝑃 𝑄)) → ((𝐺 𝑈) (𝑃 ((𝑄 𝐺) 𝑊))) = 𝑆)
258, 9, 21, 22, 24syl121anc 1377 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐺 𝑈) (𝑃 ((𝑄 𝐺) 𝑊))) = 𝑆)
267, 20, 253eqtr3d 2786 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝐹 = 𝐺)) → 𝑅 = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  wne 2941   class class class wbr 5068  cfv 6398  (class class class)co 7232  lecple 16837  joincjn 17846  meetcmee 17847  Atomscatm 37044  HLchlt 37131  LHypclh 37765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-op 4563  df-uni 4835  df-iun 4921  df-iin 4922  df-br 5069  df-opab 5131  df-mpt 5151  df-id 5470  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-1st 7780  df-2nd 7781  df-proset 17830  df-poset 17848  df-plt 17864  df-lub 17880  df-glb 17881  df-join 17882  df-meet 17883  df-p0 17959  df-p1 17960  df-lat 17966  df-clat 18033  df-oposet 36957  df-ol 36959  df-oml 36960  df-covers 37047  df-ats 37048  df-atl 37079  df-cvlat 37103  df-hlat 37132  df-lines 37282  df-psubsp 37284  df-pmap 37285  df-padd 37577  df-lhyp 37769
This theorem is referenced by:  cdleme35h2  38238  cdleme36m  38242
  Copyright terms: Public domain W3C validator