Proof of Theorem cdleme35h
Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . 5
⊢ (𝐹 = 𝐺 → (𝐹 ∨ 𝑈) = (𝐺 ∨ 𝑈)) |
2 | | oveq2 7263 |
. . . . . . 7
⊢ (𝐹 = 𝐺 → (𝑄 ∨ 𝐹) = (𝑄 ∨ 𝐺)) |
3 | 2 | oveq1d 7270 |
. . . . . 6
⊢ (𝐹 = 𝐺 → ((𝑄 ∨ 𝐹) ∧ 𝑊) = ((𝑄 ∨ 𝐺) ∧ 𝑊)) |
4 | 3 | oveq2d 7271 |
. . . . 5
⊢ (𝐹 = 𝐺 → (𝑃 ∨ ((𝑄 ∨ 𝐹) ∧ 𝑊)) = (𝑃 ∨ ((𝑄 ∨ 𝐺) ∧ 𝑊))) |
5 | 1, 4 | oveq12d 7273 |
. . . 4
⊢ (𝐹 = 𝐺 → ((𝐹 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐹) ∧ 𝑊))) = ((𝐺 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐺) ∧ 𝑊)))) |
6 | 5 | 3ad2ant3 1133 |
. . 3
⊢ ((¬
𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺) → ((𝐹 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐹) ∧ 𝑊))) = ((𝐺 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐺) ∧ 𝑊)))) |
7 | 6 | 3ad2ant3 1133 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐹 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐹) ∧ 𝑊))) = ((𝐺 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐺) ∧ 𝑊)))) |
8 | | simp1 1134 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
9 | | simp21 1204 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → 𝑃 ≠ 𝑄) |
10 | | simp22 1205 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) |
11 | | simp31 1207 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) |
12 | | cdleme35.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
13 | | cdleme35.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
14 | | cdleme35.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
15 | | cdleme35.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
16 | | cdleme35.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
17 | | cdleme35.u |
. . . 4
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
18 | | cdleme35.f |
. . . 4
⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) |
19 | 12, 13, 14, 15, 16, 17, 18 | cdleme35g 38396 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → ((𝐹 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐹) ∧ 𝑊))) = 𝑅) |
20 | 8, 9, 10, 11, 19 | syl121anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐹 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐹) ∧ 𝑊))) = 𝑅) |
21 | | simp23 1206 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
22 | | simp32 1208 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
23 | | cdleme35.g |
. . . 4
⊢ 𝐺 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) |
24 | 12, 13, 14, 15, 16, 17, 23 | cdleme35g 38396 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → ((𝐺 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐺) ∧ 𝑊))) = 𝑆) |
25 | 8, 9, 21, 22, 24 | syl121anc 1373 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → ((𝐺 ∨ 𝑈) ∧ (𝑃 ∨ ((𝑄 ∨ 𝐺) ∧ 𝑊))) = 𝑆) |
26 | 7, 20, 25 | 3eqtr3d 2786 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝐹 = 𝐺)) → 𝑅 = 𝑆) |