![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > osumi | Structured version Visualization version GIF version |
Description: If two closed subspaces of a Hilbert space are orthogonal, their subspace sum equals their subspace join. Lemma 3 of [Kalmbach] p. 67. Note that the (countable) Axiom of Choice is used for this proof via pjhth 31323, although "the hard part" of this proof, chscl 31571, requires no choice. (Contributed by NM, 28-Oct-1999.) (Revised by Mario Carneiro, 19-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
osum.1 | ⊢ 𝐴 ∈ Cℋ |
osum.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
osumi | ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | osum.1 | . . . 4 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝐴 ⊆ (⊥‘𝐵) → 𝐴 ∈ Cℋ ) |
3 | osum.2 | . . . 4 ⊢ 𝐵 ∈ Cℋ | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ∈ Cℋ ) |
5 | 1, 3 | chsscon2i 31393 | . . . 4 ⊢ (𝐴 ⊆ (⊥‘𝐵) ↔ 𝐵 ⊆ (⊥‘𝐴)) |
6 | 5 | biimpi 215 | . . 3 ⊢ (𝐴 ⊆ (⊥‘𝐵) → 𝐵 ⊆ (⊥‘𝐴)) |
7 | 2, 4, 6 | chscl 31571 | . 2 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) ∈ Cℋ ) |
8 | 1 | chshii 31157 | . . 3 ⊢ 𝐴 ∈ Sℋ |
9 | 3 | chshii 31157 | . . 3 ⊢ 𝐵 ∈ Sℋ |
10 | 8, 9 | shjshseli 31423 | . 2 ⊢ ((𝐴 +ℋ 𝐵) ∈ Cℋ ↔ (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) |
11 | 7, 10 | sylib 217 | 1 ⊢ (𝐴 ⊆ (⊥‘𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 ‘cfv 6546 (class class class)co 7416 Cℋ cch 30859 ⊥cort 30860 +ℋ cph 30861 ∨ℋ chj 30863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 ax-cc 10469 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 ax-addf 11228 ax-mulf 11229 ax-hilex 30929 ax-hfvadd 30930 ax-hvcom 30931 ax-hvass 30932 ax-hv0cl 30933 ax-hvaddid 30934 ax-hfvmul 30935 ax-hvmulid 30936 ax-hvmulass 30937 ax-hvdistr1 30938 ax-hvdistr2 30939 ax-hvmul0 30940 ax-hfi 31009 ax-his1 31012 ax-his2 31013 ax-his3 31014 ax-his4 31015 ax-hcompl 31132 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-fi 9447 df-sup 9478 df-inf 9479 df-oi 9546 df-card 9975 df-acn 9978 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-q 12979 df-rp 13023 df-xneg 13140 df-xadd 13141 df-xmul 13142 df-ioo 13376 df-ico 13378 df-icc 13379 df-fz 13533 df-fzo 13676 df-fl 13806 df-seq 14016 df-exp 14076 df-hash 14343 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 df-rlim 15486 df-sum 15686 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-starv 17276 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-unif 17284 df-hom 17285 df-cco 17286 df-rest 17432 df-topn 17433 df-0g 17451 df-gsum 17452 df-topgen 17453 df-pt 17454 df-prds 17457 df-xrs 17512 df-qtop 17517 df-imas 17518 df-xps 17520 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-submnd 18769 df-mulg 19058 df-cntz 19307 df-cmn 19776 df-psmet 21331 df-xmet 21332 df-met 21333 df-bl 21334 df-mopn 21335 df-fbas 21336 df-fg 21337 df-cnfld 21340 df-top 22884 df-topon 22901 df-topsp 22923 df-bases 22937 df-cld 23011 df-ntr 23012 df-cls 23013 df-nei 23090 df-cn 23219 df-cnp 23220 df-lm 23221 df-haus 23307 df-tx 23554 df-hmeo 23747 df-fil 23838 df-fm 23930 df-flim 23931 df-flf 23932 df-xms 24314 df-ms 24315 df-tms 24316 df-cfil 25271 df-cau 25272 df-cmet 25273 df-grpo 30423 df-gid 30424 df-ginv 30425 df-gdiv 30426 df-ablo 30475 df-vc 30489 df-nv 30522 df-va 30525 df-ba 30526 df-sm 30527 df-0v 30528 df-vs 30529 df-nmcv 30530 df-ims 30531 df-dip 30631 df-ssp 30652 df-ph 30743 df-cbn 30793 df-hnorm 30898 df-hba 30899 df-hvsub 30901 df-hlim 30902 df-hcau 30903 df-sh 31137 df-ch 31151 df-oc 31182 df-ch0 31183 df-shs 31238 df-chj 31240 df-pjh 31325 |
This theorem is referenced by: osumcori 31573 osumcor2i 31574 osum 31575 spansnji 31576 5oai 31591 3oalem5 31596 pjsumi 31640 pjdsi 31642 pjds3i 31643 pjssumi 32101 |
Copyright terms: Public domain | W3C validator |