![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ococi | Structured version Visualization version GIF version |
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococ.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
ococi | ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ococ.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 30745 | . . . . 5 ⊢ 𝐴 ∈ Sℋ |
3 | shocsh 30802 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (⊥‘𝐴) ∈ Sℋ |
5 | shocsh 30802 | . . . 4 ⊢ ((⊥‘𝐴) ∈ Sℋ → (⊥‘(⊥‘𝐴)) ∈ Sℋ ) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (⊥‘(⊥‘𝐴)) ∈ Sℋ |
7 | shococss 30812 | . . . 4 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
8 | 2, 7 | ax-mp 5 | . . 3 ⊢ 𝐴 ⊆ (⊥‘(⊥‘𝐴)) |
9 | incom 4202 | . . . 4 ⊢ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) | |
10 | ocin 30814 | . . . . 5 ⊢ ((⊥‘𝐴) ∈ Sℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) | |
11 | 4, 10 | ax-mp 5 | . . . 4 ⊢ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ |
12 | 9, 11 | eqtri 2758 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐴)) = 0ℋ |
13 | 1, 6, 8, 12 | omlsii 30921 | . 2 ⊢ 𝐴 = (⊥‘(⊥‘𝐴)) |
14 | 13 | eqcomi 2739 | 1 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∩ cin 3948 ⊆ wss 3949 ‘cfv 6544 Sℋ csh 30446 Cℋ cch 30447 ⊥cort 30448 0ℋc0h 30453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-inf2 9640 ax-cc 10434 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 ax-addf 11193 ax-mulf 11194 ax-hilex 30517 ax-hfvadd 30518 ax-hvcom 30519 ax-hvass 30520 ax-hv0cl 30521 ax-hvaddid 30522 ax-hfvmul 30523 ax-hvmulid 30524 ax-hvmulass 30525 ax-hvdistr1 30526 ax-hvdistr2 30527 ax-hvmul0 30528 ax-hfi 30597 ax-his1 30600 ax-his2 30601 ax-his3 30602 ax-his4 30603 ax-hcompl 30720 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-fi 9410 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-acn 9941 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-div 11878 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-n0 12479 df-z 12565 df-uz 12829 df-q 12939 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ico 13336 df-icc 13337 df-fz 13491 df-fl 13763 df-seq 13973 df-exp 14034 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-rlim 15439 df-rest 17374 df-topgen 17395 df-psmet 21138 df-xmet 21139 df-met 21140 df-bl 21141 df-mopn 21142 df-fbas 21143 df-fg 21144 df-top 22618 df-topon 22635 df-bases 22671 df-cld 22745 df-ntr 22746 df-cls 22747 df-nei 22824 df-lm 22955 df-haus 23041 df-fil 23572 df-fm 23664 df-flim 23665 df-flf 23666 df-cfil 25005 df-cau 25006 df-cmet 25007 df-grpo 30011 df-gid 30012 df-ginv 30013 df-gdiv 30014 df-ablo 30063 df-vc 30077 df-nv 30110 df-va 30113 df-ba 30114 df-sm 30115 df-0v 30116 df-vs 30117 df-nmcv 30118 df-ims 30119 df-ssp 30240 df-ph 30331 df-cbn 30381 df-hnorm 30486 df-hba 30487 df-hvsub 30489 df-hlim 30490 df-hcau 30491 df-sh 30725 df-ch 30739 df-oc 30770 df-ch0 30771 |
This theorem is referenced by: ococ 30924 pjococi 30955 sshhococi 31064 h1de2ctlem 31073 h1datomi 31099 qlax1i 31145 spansnji 31164 riesz3i 31580 chirredlem4 31911 chirredi 31912 mdoc2i 31944 dmdoc2i 31946 |
Copyright terms: Public domain | W3C validator |