Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ococi | Structured version Visualization version GIF version |
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of [Beran] p. 102. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ococ.1 | ⊢ 𝐴 ∈ Cℋ |
Ref | Expression |
---|---|
ococi | ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ococ.1 | . . 3 ⊢ 𝐴 ∈ Cℋ | |
2 | 1 | chshii 29321 | . . . . 5 ⊢ 𝐴 ∈ Sℋ |
3 | shocsh 29378 | . . . . 5 ⊢ (𝐴 ∈ Sℋ → (⊥‘𝐴) ∈ Sℋ ) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ (⊥‘𝐴) ∈ Sℋ |
5 | shocsh 29378 | . . . 4 ⊢ ((⊥‘𝐴) ∈ Sℋ → (⊥‘(⊥‘𝐴)) ∈ Sℋ ) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (⊥‘(⊥‘𝐴)) ∈ Sℋ |
7 | shococss 29388 | . . . 4 ⊢ (𝐴 ∈ Sℋ → 𝐴 ⊆ (⊥‘(⊥‘𝐴))) | |
8 | 2, 7 | ax-mp 5 | . . 3 ⊢ 𝐴 ⊆ (⊥‘(⊥‘𝐴)) |
9 | incom 4124 | . . . 4 ⊢ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐴)) = ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) | |
10 | ocin 29390 | . . . . 5 ⊢ ((⊥‘𝐴) ∈ Sℋ → ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ) | |
11 | 4, 10 | ax-mp 5 | . . . 4 ⊢ ((⊥‘𝐴) ∩ (⊥‘(⊥‘𝐴))) = 0ℋ |
12 | 9, 11 | eqtri 2766 | . . 3 ⊢ ((⊥‘(⊥‘𝐴)) ∩ (⊥‘𝐴)) = 0ℋ |
13 | 1, 6, 8, 12 | omlsii 29497 | . 2 ⊢ 𝐴 = (⊥‘(⊥‘𝐴)) |
14 | 13 | eqcomi 2747 | 1 ⊢ (⊥‘(⊥‘𝐴)) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2111 ∩ cin 3874 ⊆ wss 3875 ‘cfv 6389 Sℋ csh 29022 Cℋ cch 29023 ⊥cort 29024 0ℋc0h 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-inf2 9269 ax-cc 10062 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-pre-sup 10820 ax-addf 10821 ax-mulf 10822 ax-hilex 29093 ax-hfvadd 29094 ax-hvcom 29095 ax-hvass 29096 ax-hv0cl 29097 ax-hvaddid 29098 ax-hfvmul 29099 ax-hvmulid 29100 ax-hvmulass 29101 ax-hvdistr1 29102 ax-hvdistr2 29103 ax-hvmul0 29104 ax-hfi 29173 ax-his1 29176 ax-his2 29177 ax-his3 29178 ax-his4 29179 ax-hcompl 29296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-iin 4916 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-se 5519 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-isom 6398 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-oadd 8215 df-omul 8216 df-er 8400 df-map 8519 df-pm 8520 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-fi 9040 df-sup 9071 df-inf 9072 df-oi 9139 df-card 9568 df-acn 9571 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-div 11503 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-n0 12104 df-z 12190 df-uz 12452 df-q 12558 df-rp 12600 df-xneg 12717 df-xadd 12718 df-xmul 12719 df-ico 12954 df-icc 12955 df-fz 13109 df-fl 13380 df-seq 13588 df-exp 13649 df-cj 14675 df-re 14676 df-im 14677 df-sqrt 14811 df-abs 14812 df-clim 15062 df-rlim 15063 df-rest 16940 df-topgen 16961 df-psmet 20368 df-xmet 20369 df-met 20370 df-bl 20371 df-mopn 20372 df-fbas 20373 df-fg 20374 df-top 21804 df-topon 21821 df-bases 21856 df-cld 21929 df-ntr 21930 df-cls 21931 df-nei 22008 df-lm 22139 df-haus 22225 df-fil 22756 df-fm 22848 df-flim 22849 df-flf 22850 df-cfil 24165 df-cau 24166 df-cmet 24167 df-grpo 28587 df-gid 28588 df-ginv 28589 df-gdiv 28590 df-ablo 28639 df-vc 28653 df-nv 28686 df-va 28689 df-ba 28690 df-sm 28691 df-0v 28692 df-vs 28693 df-nmcv 28694 df-ims 28695 df-ssp 28816 df-ph 28907 df-cbn 28957 df-hnorm 29062 df-hba 29063 df-hvsub 29065 df-hlim 29066 df-hcau 29067 df-sh 29301 df-ch 29315 df-oc 29346 df-ch0 29347 |
This theorem is referenced by: ococ 29500 pjococi 29531 sshhococi 29640 h1de2ctlem 29649 h1datomi 29675 qlax1i 29721 spansnji 29740 riesz3i 30156 chirredlem4 30487 chirredi 30488 mdoc2i 30520 dmdoc2i 30522 |
Copyright terms: Public domain | W3C validator |