HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  helsh Structured version   Visualization version   GIF version

Theorem helsh 31225
Description: Hilbert space is a subspace of Hilbert space. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
helsh ℋ ∈ S

Proof of Theorem helsh
StepHypRef Expression
1 helch 31223 . 2 ℋ ∈ C
21chshii 31207 1 ℋ ∈ S
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  chba 30899   S csh 30908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066  ax-hilex 30979  ax-hfvadd 30980  ax-hv0cl 30983  ax-hfvmul 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-map 8752  df-nn 12126  df-hlim 30952  df-sh 31187  df-ch 31201
This theorem is referenced by:  shsspwh  31226  norm1hex  31231  hhssablo  31243  shscl  31298  choc1  31307  spanval  31313  spancl  31316  shslej  31360  shincl  31361  rnelshi  32039
  Copyright terms: Public domain W3C validator