HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chlej1i Structured version   Visualization version   GIF version

Theorem chlej1i 31301
Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
ch0le.1 𝐴C
chjcl.2 𝐵C
chlub.1 𝐶C
Assertion
Ref Expression
chlej1i (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶))

Proof of Theorem chlej1i
StepHypRef Expression
1 ch0le.1 . . 3 𝐴C
21chshii 31055 . 2 𝐴S
3 chjcl.2 . . 3 𝐵C
43chshii 31055 . 2 𝐵S
5 chlub.1 . . 3 𝐶C
65chshii 31055 . 2 𝐶S
72, 4, 6shlej1i 31206 1 (𝐴𝐵 → (𝐴 𝐶) ⊆ (𝐵 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3947  (class class class)co 7424   C cch 30757   chj 30761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-hilex 30827  ax-hfvadd 30828  ax-hv0cl 30831  ax-hfvmul 30833  ax-hvmul0 30838  ax-hfi 30907  ax-his2 30911  ax-his3 30912
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11286  df-mnf 11287  df-ltxr 11289  df-sh 31035  df-ch 31049  df-oc 31080  df-chj 31138
This theorem is referenced by:  chlej12i  31303  pjoml4i  31415  mdslle1i  32145  mdslle2i  32146  mdslj1i  32147  mdslj2i  32148  mdslmd1lem1  32153  mdslmd2i  32158
  Copyright terms: Public domain W3C validator