| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climmpt2 | Structured version Visualization version GIF version | ||
| Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| climmpt2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climmpt2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climmpt2.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climmpt2.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| Ref | Expression |
|---|---|
| climmpt2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmpt2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climmpt2.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | climmpt2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | eqid 2737 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
| 5 | 3, 4 | climmpt 15607 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
| 6 | 1, 2, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
| 7 | climmpt2.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 8 | 7 | ralrimiva 3146 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 9 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 10 | 9 | eleq1d 2826 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
| 11 | 10 | cbvralvw 3237 | . . . . . . 7 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ∈ ℂ) |
| 12 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
| 13 | 12 | eleq1d 2826 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ∈ ℂ ↔ (𝐹‘𝑛) ∈ ℂ)) |
| 14 | 13 | cbvralvw 3237 | . . . . . . 7 ⊢ (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ∈ ℂ ↔ ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
| 15 | 11, 14 | bitri 275 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
| 16 | 8, 15 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
| 17 | 16 | r19.21bi 3251 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
| 18 | 17 | fmpttd 7135 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
| 19 | 3, 1, 18 | rlimclim 15582 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
| 20 | 6, 19 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 ℂcc 11153 ℤcz 12613 ℤ≥cuz 12878 ⇝ cli 15520 ⇝𝑟 crli 15521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fl 13832 df-clim 15524 df-rlim 15525 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |