| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climmpt2 | Structured version Visualization version GIF version | ||
| Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.) |
| Ref | Expression |
|---|---|
| climmpt2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climmpt2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climmpt2.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| climmpt2.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| Ref | Expression |
|---|---|
| climmpt2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmpt2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 2 | climmpt2.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | climmpt2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | eqid 2733 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
| 5 | 3, 4 | climmpt 15482 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
| 6 | 1, 2, 5 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
| 7 | climmpt2.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 8 | 7 | ralrimiva 3125 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
| 9 | fveq2 6830 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
| 10 | 9 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
| 11 | 10 | cbvralvw 3211 | . . . . . . 7 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ∈ ℂ) |
| 12 | fveq2 6830 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
| 13 | 12 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ∈ ℂ ↔ (𝐹‘𝑛) ∈ ℂ)) |
| 14 | 13 | cbvralvw 3211 | . . . . . . 7 ⊢ (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ∈ ℂ ↔ ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
| 15 | 11, 14 | bitri 275 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
| 16 | 8, 15 | sylib 218 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
| 17 | 16 | r19.21bi 3225 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
| 18 | 17 | fmpttd 7056 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
| 19 | 3, 1, 18 | rlimclim 15457 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
| 20 | 6, 19 | bitr4d 282 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6488 ℂcc 11013 ℤcz 12477 ℤ≥cuz 12740 ⇝ cli 15395 ⇝𝑟 crli 15396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fl 13700 df-clim 15399 df-rlim 15400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |