Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climmpt2 | Structured version Visualization version GIF version |
Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.) |
Ref | Expression |
---|---|
climmpt2.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climmpt2.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climmpt2.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climmpt2.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
Ref | Expression |
---|---|
climmpt2 | ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climmpt2.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | climmpt2.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | climmpt2.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) = (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) | |
5 | 3, 4 | climmpt 15208 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
6 | 1, 2, 5 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
7 | climmpt2.5 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
8 | 7 | ralrimiva 3107 | . . . . . 6 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
9 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
10 | 9 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑚) ∈ ℂ)) |
11 | 10 | cbvralvw 3372 | . . . . . . 7 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ∈ ℂ) |
12 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝑚 = 𝑛 → (𝐹‘𝑚) = (𝐹‘𝑛)) | |
13 | 12 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → ((𝐹‘𝑚) ∈ ℂ ↔ (𝐹‘𝑛) ∈ ℂ)) |
14 | 13 | cbvralvw 3372 | . . . . . . 7 ⊢ (∀𝑚 ∈ 𝑍 (𝐹‘𝑚) ∈ ℂ ↔ ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
15 | 11, 14 | bitri 274 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ ↔ ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
16 | 8, 15 | sylib 217 | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐹‘𝑛) ∈ ℂ) |
17 | 16 | r19.21bi 3132 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℂ) |
18 | 17 | fmpttd 6971 | . . 3 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)):𝑍⟶ℂ) |
19 | 3, 1, 18 | rlimclim 15183 | . 2 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝ 𝐴)) |
20 | 6, 19 | bitr4d 281 | 1 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ (𝑛 ∈ 𝑍 ↦ (𝐹‘𝑛)) ⇝𝑟 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 ℂcc 10800 ℤcz 12249 ℤ≥cuz 12511 ⇝ cli 15121 ⇝𝑟 crli 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fl 13440 df-clim 15125 df-rlim 15126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |