MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt2 Structured version   Visualization version   GIF version

Theorem climmpt2 15210
Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
climmpt2.1 𝑍 = (ℤ𝑀)
climmpt2.2 (𝜑𝑀 ∈ ℤ)
climmpt2.3 (𝜑𝐹𝑉)
climmpt2.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
climmpt2 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍   𝜑,𝑘   𝑛,𝐹   𝐴,𝑛   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝑀(𝑘,𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem climmpt2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 climmpt2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climmpt2.3 . . 3 (𝜑𝐹𝑉)
3 climmpt2.1 . . . 4 𝑍 = (ℤ𝑀)
4 eqid 2738 . . . 4 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
53, 4climmpt 15208 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
61, 2, 5syl2anc 583 . 2 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
7 climmpt2.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
87ralrimiva 3107 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
9 fveq2 6756 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
109eleq1d 2823 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1110cbvralvw 3372 . . . . . . 7 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑚𝑍 (𝐹𝑚) ∈ ℂ)
12 fveq2 6756 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1312eleq1d 2823 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐹𝑚) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
1413cbvralvw 3372 . . . . . . 7 (∀𝑚𝑍 (𝐹𝑚) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1511, 14bitri 274 . . . . . 6 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
168, 15sylib 217 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1716r19.21bi 3132 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
1817fmpttd 6971 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
193, 1, 18rlimclim 15183 . 2 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
206, 19bitr4d 281 1 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  cmpt 5153  cfv 6418  cc 10800  cz 12249  cuz 12511  cli 15121  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fl 13440  df-clim 15125  df-rlim 15126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator