MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt2 Structured version   Visualization version   GIF version

Theorem climmpt2 15484
Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014.)
Hypotheses
Ref Expression
climmpt2.1 𝑍 = (ℤ𝑀)
climmpt2.2 (𝜑𝑀 ∈ ℤ)
climmpt2.3 (𝜑𝐹𝑉)
climmpt2.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
Assertion
Ref Expression
climmpt2 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑍   𝜑,𝑘   𝑛,𝐹   𝐴,𝑛   𝑛,𝑍   𝜑,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝑀(𝑘,𝑛)   𝑉(𝑘,𝑛)

Proof of Theorem climmpt2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 climmpt2.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 climmpt2.3 . . 3 (𝜑𝐹𝑉)
3 climmpt2.1 . . . 4 𝑍 = (ℤ𝑀)
4 eqid 2733 . . . 4 (𝑛𝑍 ↦ (𝐹𝑛)) = (𝑛𝑍 ↦ (𝐹𝑛))
53, 4climmpt 15482 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹𝑉) → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
61, 2, 5syl2anc 584 . 2 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
7 climmpt2.5 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
87ralrimiva 3125 . . . . . 6 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
9 fveq2 6830 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
109eleq1d 2818 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑚) ∈ ℂ))
1110cbvralvw 3211 . . . . . . 7 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑚𝑍 (𝐹𝑚) ∈ ℂ)
12 fveq2 6830 . . . . . . . . 9 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
1312eleq1d 2818 . . . . . . . 8 (𝑚 = 𝑛 → ((𝐹𝑚) ∈ ℂ ↔ (𝐹𝑛) ∈ ℂ))
1413cbvralvw 3211 . . . . . . 7 (∀𝑚𝑍 (𝐹𝑚) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1511, 14bitri 275 . . . . . 6 (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ↔ ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
168, 15sylib 218 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐹𝑛) ∈ ℂ)
1716r19.21bi 3225 . . . 4 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℂ)
1817fmpttd 7056 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝐹𝑛)):𝑍⟶ℂ)
193, 1, 18rlimclim 15457 . 2 (𝜑 → ((𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝ 𝐴))
206, 19bitr4d 282 1 (𝜑 → (𝐹𝐴 ↔ (𝑛𝑍 ↦ (𝐹𝑛)) ⇝𝑟 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  cmpt 5176  cfv 6488  cc 11013  cz 12477  cuz 12740  cli 15395  𝑟 crli 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fl 13700  df-clim 15399  df-rlim 15400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator