![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > divcnvg | Structured version Visualization version GIF version |
Description: The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
divcnvg | ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluznn 12909 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ) | |
2 | eqidd 2732 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
3 | oveq2 7420 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛)) | |
4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ ∧ 𝑚 = 𝑛) → (𝐴 / 𝑚) = (𝐴 / 𝑛)) |
5 | id 22 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
6 | ovexd 7447 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝐴 / 𝑛) ∈ V) | |
7 | 2, 4, 5, 6 | fvmptd 7005 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛) = (𝐴 / 𝑛)) |
8 | 7 | eqcomd 2737 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐴 / 𝑛) = ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐴 / 𝑛) = ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) |
10 | 9 | adantll 711 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐴 / 𝑛) = ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) |
11 | 10 | mpteq2dva 5248 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) = (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛))) |
12 | divcnv 15806 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
14 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
15 | 14 | nnzd 12592 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ) |
16 | nnex 12225 | . . . . 5 ⊢ ℕ ∈ V | |
17 | 16 | mptex 7227 | . . . 4 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ∈ V |
18 | eqid 2731 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
19 | eqid 2731 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) = (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) | |
20 | 18, 19 | climmpt 15522 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ∈ V) → ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) ⇝ 0)) |
21 | 15, 17, 20 | sylancl 585 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) ⇝ 0)) |
22 | 13, 21 | mpbid 231 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) ⇝ 0) |
23 | 11, 22 | eqbrtrd 5170 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 ℂcc 11114 0cc0 11116 / cdiv 11878 ℕcn 12219 ℤcz 12565 ℤ≥cuz 12829 ⇝ cli 15435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-pm 8829 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-n0 12480 df-z 12566 df-uz 12830 df-rp 12982 df-fl 13764 df-seq 13974 df-exp 14035 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 |
This theorem is referenced by: ioodvbdlimc1lem2 45107 ioodvbdlimc2lem 45109 |
Copyright terms: Public domain | W3C validator |