| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > divcnvg | Structured version Visualization version GIF version | ||
| Description: The sequence of reciprocals of positive integers, multiplied by the factor 𝐴, converges to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| divcnvg | ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluznn 12883 | . . . . 5 ⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℕ) | |
| 2 | eqidd 2731 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) = (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))) | |
| 3 | oveq2 7397 | . . . . . . . 8 ⊢ (𝑚 = 𝑛 → (𝐴 / 𝑚) = (𝐴 / 𝑛)) | |
| 4 | 3 | adantl 481 | . . . . . . 7 ⊢ ((𝑛 ∈ ℕ ∧ 𝑚 = 𝑛) → (𝐴 / 𝑚) = (𝐴 / 𝑛)) |
| 5 | id 22 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ) | |
| 6 | ovexd 7424 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → (𝐴 / 𝑛) ∈ V) | |
| 7 | 2, 4, 5, 6 | fvmptd 6977 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛) = (𝐴 / 𝑛)) |
| 8 | 7 | eqcomd 2736 | . . . . 5 ⊢ (𝑛 ∈ ℕ → (𝐴 / 𝑛) = ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) |
| 9 | 1, 8 | syl 17 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐴 / 𝑛) = ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) |
| 10 | 9 | adantll 714 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐴 / 𝑛) = ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) |
| 11 | 10 | mpteq2dva 5202 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) = (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛))) |
| 12 | divcnv 15825 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) | |
| 13 | 12 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℕ) | |
| 15 | 14 | nnzd 12562 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ) |
| 16 | nnex 12193 | . . . . 5 ⊢ ℕ ∈ V | |
| 17 | 16 | mptex 7199 | . . . 4 ⊢ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ∈ V |
| 18 | eqid 2730 | . . . . 5 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 19 | eqid 2730 | . . . . 5 ⊢ (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) = (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) | |
| 20 | 18, 19 | climmpt 15543 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ (𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ∈ V) → ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) ⇝ 0)) |
| 21 | 15, 17, 20 | sylancl 586 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚)) ⇝ 0 ↔ (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) ⇝ 0)) |
| 22 | 13, 21 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ ((𝑚 ∈ ℕ ↦ (𝐴 / 𝑚))‘𝑛)) ⇝ 0) |
| 23 | 11, 22 | eqbrtrd 5131 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ) → (𝑛 ∈ (ℤ≥‘𝑀) ↦ (𝐴 / 𝑛)) ⇝ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 class class class wbr 5109 ↦ cmpt 5190 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 / cdiv 11841 ℕcn 12187 ℤcz 12535 ℤ≥cuz 12799 ⇝ cli 15456 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-pm 8804 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fl 13760 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-rlim 15461 |
| This theorem is referenced by: ioodvbdlimc1lem2 45923 ioodvbdlimc2lem 45925 |
| Copyright terms: Public domain | W3C validator |