| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ico01fl0 | Structured version Visualization version GIF version | ||
| Description: The floor of a real number in [0, 1) is 0. Remark: may shorten the proof of modid 13858 or a version of it where the antecedent is membership in an interval. (Contributed by BJ, 29-Jun-2019.) |
| Ref | Expression |
|---|---|
| ico01fl0 | ⊢ (𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . . . 4 ⊢ 0 ∈ ℝ | |
| 2 | 1xr 11233 | . . . 4 ⊢ 1 ∈ ℝ* | |
| 3 | icossre 13389 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ*) → (0[,)1) ⊆ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | . . 3 ⊢ (0[,)1) ⊆ ℝ |
| 5 | 4 | sseli 3942 | . 2 ⊢ (𝐴 ∈ (0[,)1) → 𝐴 ∈ ℝ) |
| 6 | 0xr 11221 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 7 | elico1 13349 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝐴 ∈ (0[,)1) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 1))) | |
| 8 | 6, 2, 7 | mp2an 692 | . . 3 ⊢ (𝐴 ∈ (0[,)1) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 1)) |
| 9 | 8 | simp2bi 1146 | . 2 ⊢ (𝐴 ∈ (0[,)1) → 0 ≤ 𝐴) |
| 10 | 8 | simp3bi 1147 | . 2 ⊢ (𝐴 ∈ (0[,)1) → 𝐴 < 1) |
| 11 | recn 11158 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 12 | 11 | addlidd 11375 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (0 + 𝐴) = 𝐴) |
| 13 | 12 | fveqeq2d 6866 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(0 + 𝐴)) = 0 ↔ (⌊‘𝐴) = 0)) |
| 14 | 0z 12540 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 15 | flbi2 13779 | . . . . 5 ⊢ ((0 ∈ ℤ ∧ 𝐴 ∈ ℝ) → ((⌊‘(0 + 𝐴)) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 1))) | |
| 16 | 14, 15 | mpan 690 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((⌊‘(0 + 𝐴)) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 1))) |
| 17 | 13, 16 | bitr3d 281 | . . 3 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) = 0 ↔ (0 ≤ 𝐴 ∧ 𝐴 < 1))) |
| 18 | 17 | biimpar 477 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ (0 ≤ 𝐴 ∧ 𝐴 < 1)) → (⌊‘𝐴) = 0) |
| 19 | 5, 9, 10, 18 | syl12anc 836 | 1 ⊢ (𝐴 ∈ (0[,)1) → (⌊‘𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℤcz 12529 [,)cico 13308 ⌊cfl 13752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-ico 13312 df-fl 13754 |
| This theorem is referenced by: dnizeq0 36463 dignnld 48592 digexp 48596 |
| Copyright terms: Public domain | W3C validator |