MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addmodid Structured version   Visualization version   GIF version

Theorem addmodid 13281
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
addmodid ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)

Proof of Theorem addmodid
StepHypRef Expression
1 nncn 11640 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
21mulid2d 10653 . . . . . 6 (𝑀 ∈ ℕ → (1 · 𝑀) = 𝑀)
323ad2ant2 1130 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (1 · 𝑀) = 𝑀)
43eqcomd 2827 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 = (1 · 𝑀))
54oveq1d 7165 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝑀 + 𝐴) = ((1 · 𝑀) + 𝐴))
65oveq1d 7165 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = (((1 · 𝑀) + 𝐴) mod 𝑀))
7 1zzd 12007 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 1 ∈ ℤ)
8 nnrp 12394 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
983ad2ant2 1130 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ+)
10 nn0re 11900 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110rexrd 10685 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
12113ad2ant1 1129 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ*)
13 nn0ge0 11916 . . . . 5 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
14133ad2ant1 1129 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 0 ≤ 𝐴)
15 simp3 1134 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 < 𝑀)
16 0xr 10682 . . . . 5 0 ∈ ℝ*
17 nnre 11639 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1817rexrd 10685 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ*)
19183ad2ant2 1130 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ*)
20 elico1 12775 . . . . 5 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
2116, 19, 20sylancr 589 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
2212, 14, 15, 21mpbir3and 1338 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ (0[,)𝑀))
23 muladdmodid 13273 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
247, 9, 22, 23syl3anc 1367 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
256, 24eqtrd 2856 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110   class class class wbr 5059  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  cn 11632  0cn0 11891  cz 11975  +crp 12383  [,)cico 12734   mod cmo 13231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-fl 13156  df-mod 13232
This theorem is referenced by:  addmodidr  13282  cshwidxn  14165  eucrctshift  28016  ex-mod  28222
  Copyright terms: Public domain W3C validator