MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addmodid Structured version   Visualization version   GIF version

Theorem addmodid 13013
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
addmodid ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)

Proof of Theorem addmodid
StepHypRef Expression
1 nncn 11359 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
21mulid2d 10375 . . . . . 6 (𝑀 ∈ ℕ → (1 · 𝑀) = 𝑀)
323ad2ant2 1168 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (1 · 𝑀) = 𝑀)
43eqcomd 2831 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 = (1 · 𝑀))
54oveq1d 6920 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝑀 + 𝐴) = ((1 · 𝑀) + 𝐴))
65oveq1d 6920 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = (((1 · 𝑀) + 𝐴) mod 𝑀))
7 1zzd 11736 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 1 ∈ ℤ)
8 nnrp 12125 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
983ad2ant2 1168 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ+)
10 nn0re 11628 . . . . . 6 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
1110rexrd 10406 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
12113ad2ant1 1167 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ*)
13 nn0ge0 11645 . . . . 5 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
14133ad2ant1 1167 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 0 ≤ 𝐴)
15 simp3 1172 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 < 𝑀)
16 0xr 10403 . . . . 5 0 ∈ ℝ*
17 nnre 11358 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
1817rexrd 10406 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ*)
19183ad2ant2 1168 . . . . 5 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ*)
20 elico1 12506 . . . . 5 ((0 ∈ ℝ*𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
2116, 19, 20sylancr 581 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴𝐴 < 𝑀)))
2212, 14, 15, 21mpbir3and 1446 . . 3 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ (0[,)𝑀))
23 muladdmodid 13005 . . 3 ((1 ∈ ℤ ∧ 𝑀 ∈ ℝ+𝐴 ∈ (0[,)𝑀)) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
247, 9, 22, 23syl3anc 1494 . 2 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴)
256, 24eqtrd 2861 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  w3a 1111   = wceq 1656  wcel 2164   class class class wbr 4873  (class class class)co 6905  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  *cxr 10390   < clt 10391  cle 10392  cn 11350  0cn0 11618  cz 11704  +crp 12112  [,)cico 12465   mod cmo 12963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-ico 12469  df-fl 12888  df-mod 12964
This theorem is referenced by:  addmodidr  13014  cshwidxn  13930  eucrctshift  27609  ex-mod  27853
  Copyright terms: Public domain W3C validator