![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addmodid | Structured version Visualization version GIF version |
Description: The sum of a positive integer and a nonnegative integer less than the positive integer is equal to the nonnegative integer modulo the positive integer. (Contributed by Alexander van der Vekens, 30-Oct-2018.) (Proof shortened by AV, 5-Jul-2020.) |
Ref | Expression |
---|---|
addmodid | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nncn 11359 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
2 | 1 | mulid2d 10375 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → (1 · 𝑀) = 𝑀) |
3 | 2 | 3ad2ant2 1168 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (1 · 𝑀) = 𝑀) |
4 | 3 | eqcomd 2831 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 = (1 · 𝑀)) |
5 | 4 | oveq1d 6920 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝑀 + 𝐴) = ((1 · 𝑀) + 𝐴)) |
6 | 5 | oveq1d 6920 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = (((1 · 𝑀) + 𝐴) mod 𝑀)) |
7 | 1zzd 11736 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 1 ∈ ℤ) | |
8 | nnrp 12125 | . . . 4 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+) | |
9 | 8 | 3ad2ant2 1168 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ+) |
10 | nn0re 11628 | . . . . . 6 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
11 | 10 | rexrd 10406 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
12 | 11 | 3ad2ant1 1167 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ ℝ*) |
13 | nn0ge0 11645 | . . . . 5 ⊢ (𝐴 ∈ ℕ0 → 0 ≤ 𝐴) | |
14 | 13 | 3ad2ant1 1167 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 0 ≤ 𝐴) |
15 | simp3 1172 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 < 𝑀) | |
16 | 0xr 10403 | . . . . 5 ⊢ 0 ∈ ℝ* | |
17 | nnre 11358 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ) | |
18 | 17 | rexrd 10406 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℝ*) |
19 | 18 | 3ad2ant2 1168 | . . . . 5 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝑀 ∈ ℝ*) |
20 | elico1 12506 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝑀 ∈ ℝ*) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) | |
21 | 16, 19, 20 | sylancr 581 | . . . 4 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (𝐴 ∈ (0[,)𝑀) ↔ (𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ∧ 𝐴 < 𝑀))) |
22 | 12, 14, 15, 21 | mpbir3and 1446 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → 𝐴 ∈ (0[,)𝑀)) |
23 | muladdmodid 13005 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐴 ∈ (0[,)𝑀)) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) | |
24 | 7, 9, 22, 23 | syl3anc 1494 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → (((1 · 𝑀) + 𝐴) mod 𝑀) = 𝐴) |
25 | 6, 24 | eqtrd 2861 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℕ ∧ 𝐴 < 𝑀) → ((𝑀 + 𝐴) mod 𝑀) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 class class class wbr 4873 (class class class)co 6905 0cc0 10252 1c1 10253 + caddc 10255 · cmul 10257 ℝ*cxr 10390 < clt 10391 ≤ cle 10392 ℕcn 11350 ℕ0cn0 11618 ℤcz 11704 ℝ+crp 12112 [,)cico 12465 mod cmo 12963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-ico 12469 df-fl 12888 df-mod 12964 |
This theorem is referenced by: addmodidr 13014 cshwidxn 13930 eucrctshift 27609 ex-mod 27853 |
Copyright terms: Public domain | W3C validator |