Proof of Theorem subfacp1lem4
Step | Hyp | Ref
| Expression |
1 | | derang.d |
. . . . 5
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
2 | | subfac.n |
. . . . 5
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
3 | | subfacp1lem.a |
. . . . 5
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
4 | | subfacp1lem1.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℕ) |
5 | | subfacp1lem1.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
6 | | subfacp1lem1.x |
. . . . 5
⊢ 𝑀 ∈ V |
7 | | subfacp1lem1.k |
. . . . 5
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
8 | | subfacp1lem5.f |
. . . . 5
⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
9 | | f1oi 6754 |
. . . . . 6
⊢ ( I
↾ 𝐾):𝐾–1-1-onto→𝐾 |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝜑 → ( I ↾ 𝐾):𝐾–1-1-onto→𝐾) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | subfacp1lem2a 33142 |
. . . 4
⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
12 | 11 | simp1d 1141 |
. . 3
⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
13 | | f1ocnv 6728 |
. . 3
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ◡𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
14 | | f1ofn 6717 |
. . 3
⊢ (◡𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ◡𝐹 Fn (1...(𝑁 + 1))) |
15 | 12, 13, 14 | 3syl 18 |
. 2
⊢ (𝜑 → ◡𝐹 Fn (1...(𝑁 + 1))) |
16 | | f1ofn 6717 |
. . 3
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1))) |
17 | 12, 16 | syl 17 |
. 2
⊢ (𝜑 → 𝐹 Fn (1...(𝑁 + 1))) |
18 | 1, 2, 3, 4, 5, 6, 7 | subfacp1lem1 33141 |
. . . . . . . 8
⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) |
19 | 18 | simp2d 1142 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1))) |
20 | 19 | eleq2d 2824 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ 𝑥 ∈ (1...(𝑁 + 1)))) |
21 | 20 | biimpar 478 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ (𝐾 ∪ {1, 𝑀})) |
22 | | elun 4083 |
. . . . 5
⊢ (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ (𝑥 ∈ 𝐾 ∨ 𝑥 ∈ {1, 𝑀})) |
23 | 21, 22 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → (𝑥 ∈ 𝐾 ∨ 𝑥 ∈ {1, 𝑀})) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 10 | subfacp1lem2b 33143 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐹‘𝑥) = (( I ↾ 𝐾)‘𝑥)) |
25 | | fvresi 7045 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐾 → (( I ↾ 𝐾)‘𝑥) = 𝑥) |
26 | 25 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (( I ↾ 𝐾)‘𝑥) = 𝑥) |
27 | 24, 26 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐹‘𝑥) = 𝑥) |
28 | 27 | fveq2d 6778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐹‘(𝐹‘𝑥)) = (𝐹‘𝑥)) |
29 | 28, 27 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
30 | | vex 3436 |
. . . . . . 7
⊢ 𝑥 ∈ V |
31 | 30 | elpr 4584 |
. . . . . 6
⊢ (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀)) |
32 | 11 | simp2d 1142 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹‘1) = 𝑀) |
33 | 32 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝐹‘1)) = (𝐹‘𝑀)) |
34 | 11 | simp3d 1143 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘𝑀) = 1) |
35 | 33, 34 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐹‘1)) = 1) |
36 | | 2fveq3 6779 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘1))) |
37 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → 𝑥 = 1) |
38 | 36, 37 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑥 = 1 → ((𝐹‘(𝐹‘𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘1)) = 1)) |
39 | 35, 38 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = 1 → (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
40 | 34 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝐹‘𝑀)) = (𝐹‘1)) |
41 | 40, 32 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝐹‘𝑀)) = 𝑀) |
42 | | 2fveq3 6779 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (𝐹‘(𝐹‘𝑥)) = (𝐹‘(𝐹‘𝑀))) |
43 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → 𝑥 = 𝑀) |
44 | 42, 43 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → ((𝐹‘(𝐹‘𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘𝑀)) = 𝑀)) |
45 | 41, 44 | syl5ibrcom 246 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 = 𝑀 → (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
46 | 39, 45 | jaod 856 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 = 1 ∨ 𝑥 = 𝑀) → (𝐹‘(𝐹‘𝑥)) = 𝑥)) |
47 | 46 | imp 407 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = 1 ∨ 𝑥 = 𝑀)) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
48 | 31, 47 | sylan2b 594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {1, 𝑀}) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
49 | 29, 48 | jaodan 955 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∨ 𝑥 ∈ {1, 𝑀})) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
50 | 23, 49 | syldan 591 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → (𝐹‘(𝐹‘𝑥)) = 𝑥) |
51 | 12 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
52 | | f1of 6716 |
. . . . . 6
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
53 | 12, 52 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
54 | 53 | ffvelrnda 6961 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → (𝐹‘𝑥) ∈ (1...(𝑁 + 1))) |
55 | | f1ocnvfv 7150 |
. . . 4
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘𝑥) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹‘𝑥)) = 𝑥 → (◡𝐹‘𝑥) = (𝐹‘𝑥))) |
56 | 51, 54, 55 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹‘𝑥)) = 𝑥 → (◡𝐹‘𝑥) = (𝐹‘𝑥))) |
57 | 50, 56 | mpd 15 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑥) = (𝐹‘𝑥)) |
58 | 15, 17, 57 | eqfnfvd 6912 |
1
⊢ (𝜑 → ◡𝐹 = 𝐹) |