Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem4 Structured version   Visualization version   GIF version

Theorem subfacp1lem4 35227
Description: Lemma for subfacp1 35230. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem5.b 𝐵 = {𝑔𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) ≠ 1)}
subfacp1lem5.f 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
Assertion
Ref Expression
subfacp1lem4 (𝜑𝐹 = 𝐹)
Distinct variable groups:   𝑓,𝑔,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦   𝑓,𝑁,𝑔,𝑛,𝑥,𝑦   𝐵,𝑓,𝑔,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑔,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑓,𝑔)   𝐹(𝑛)   𝐾(𝑔)   𝑀(𝑛)

Proof of Theorem subfacp1lem4
StepHypRef Expression
1 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
2 subfac.n . . . . 5 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
3 subfacp1lem.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
4 subfacp1lem1.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 subfacp1lem1.m . . . . 5 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
6 subfacp1lem1.x . . . . 5 𝑀 ∈ V
7 subfacp1lem1.k . . . . 5 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
8 subfacp1lem5.f . . . . 5 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
9 f1oi 6801 . . . . . 6 ( I ↾ 𝐾):𝐾1-1-onto𝐾
109a1i 11 . . . . 5 (𝜑 → ( I ↾ 𝐾):𝐾1-1-onto𝐾)
111, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2a 35224 . . . 4 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
1211simp1d 1142 . . 3 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
13 f1ocnv 6775 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
14 f1ofn 6764 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1512, 13, 143syl 18 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
16 f1ofn 6764 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1712, 16syl 17 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
181, 2, 3, 4, 5, 6, 7subfacp1lem1 35223 . . . . . . . 8 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1918simp2d 1143 . . . . . . 7 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
2019eleq2d 2817 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ 𝑥 ∈ (1...(𝑁 + 1))))
2120biimpar 477 . . . . 5 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ (𝐾 ∪ {1, 𝑀}))
22 elun 4100 . . . . 5 (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ (𝑥𝐾𝑥 ∈ {1, 𝑀}))
2321, 22sylib 218 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝑥𝐾𝑥 ∈ {1, 𝑀}))
241, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2b 35225 . . . . . . . 8 ((𝜑𝑥𝐾) → (𝐹𝑥) = (( I ↾ 𝐾)‘𝑥))
25 fvresi 7107 . . . . . . . . 9 (𝑥𝐾 → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2625adantl 481 . . . . . . . 8 ((𝜑𝑥𝐾) → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2724, 26eqtrd 2766 . . . . . . 7 ((𝜑𝑥𝐾) → (𝐹𝑥) = 𝑥)
2827fveq2d 6826 . . . . . 6 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
2928, 27eqtrd 2766 . . . . 5 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = 𝑥)
30 vex 3440 . . . . . . 7 𝑥 ∈ V
3130elpr 4598 . . . . . 6 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
3211simp2d 1143 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = 𝑀)
3332fveq2d 6826 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹‘1)) = (𝐹𝑀))
3411simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = 1)
3533, 34eqtrd 2766 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹‘1)) = 1)
36 2fveq3 6827 . . . . . . . . . 10 (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹‘1)))
37 id 22 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 = 1)
3836, 37eqeq12d 2747 . . . . . . . . 9 (𝑥 = 1 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘1)) = 1))
3935, 38syl5ibrcom 247 . . . . . . . 8 (𝜑 → (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = 𝑥))
4034fveq2d 6826 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹𝑀)) = (𝐹‘1))
4140, 32eqtrd 2766 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹𝑀)) = 𝑀)
42 2fveq3 6827 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑀)))
43 id 22 . . . . . . . . . 10 (𝑥 = 𝑀𝑥 = 𝑀)
4442, 43eqeq12d 2747 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑀)) = 𝑀))
4541, 44syl5ibrcom 247 . . . . . . . 8 (𝜑 → (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = 𝑥))
4639, 45jaod 859 . . . . . . 7 (𝜑 → ((𝑥 = 1 ∨ 𝑥 = 𝑀) → (𝐹‘(𝐹𝑥)) = 𝑥))
4746imp 406 . . . . . 6 ((𝜑 ∧ (𝑥 = 1 ∨ 𝑥 = 𝑀)) → (𝐹‘(𝐹𝑥)) = 𝑥)
4831, 47sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ {1, 𝑀}) → (𝐹‘(𝐹𝑥)) = 𝑥)
4929, 48jaodan 959 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ {1, 𝑀})) → (𝐹‘(𝐹𝑥)) = 𝑥)
5023, 49syldan 591 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹‘(𝐹𝑥)) = 𝑥)
5112adantr 480 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
52 f1of 6763 . . . . . 6 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5312, 52syl 17 . . . . 5 (𝜑𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5453ffvelcdmda 7017 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) ∈ (1...(𝑁 + 1)))
55 f1ocnvfv 7212 . . . 4 ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹𝑥) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5651, 54, 55syl2anc 584 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5750, 56mpd 15 . 2 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
5815, 17, 57eqfnfvd 6967 1 (𝜑𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cun 3895  cin 3896  c0 4280  {csn 4573  {cpr 4575  cop 4579  cmpt 5170   I cid 5508  ccnv 5613  cres 5616   Fn wfn 6476  wf 6477  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Fincfn 8869  1c1 11007   + caddc 11009  cmin 11344  cn 12125  2c2 12180  0cn0 12381  ...cfz 13407  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  subfacp1lem5  35228
  Copyright terms: Public domain W3C validator