Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem4 Structured version   Visualization version   GIF version

Theorem subfacp1lem4 31682
Description: Lemma for subfacp1 31685. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem5.b 𝐵 = {𝑔𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) ≠ 1)}
subfacp1lem5.f 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
Assertion
Ref Expression
subfacp1lem4 (𝜑𝐹 = 𝐹)
Distinct variable groups:   𝑓,𝑔,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦   𝑓,𝑁,𝑔,𝑛,𝑥,𝑦   𝐵,𝑓,𝑔,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑔,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑓,𝑔)   𝐹(𝑛)   𝐾(𝑔)   𝑀(𝑛)

Proof of Theorem subfacp1lem4
StepHypRef Expression
1 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
2 subfac.n . . . . 5 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
3 subfacp1lem.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
4 subfacp1lem1.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 subfacp1lem1.m . . . . 5 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
6 subfacp1lem1.x . . . . 5 𝑀 ∈ V
7 subfacp1lem1.k . . . . 5 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
8 subfacp1lem5.f . . . . 5 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
9 f1oi 6393 . . . . . 6 ( I ↾ 𝐾):𝐾1-1-onto𝐾
109a1i 11 . . . . 5 (𝜑 → ( I ↾ 𝐾):𝐾1-1-onto𝐾)
111, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2a 31679 . . . 4 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
1211simp1d 1173 . . 3 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
13 f1ocnv 6368 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
14 f1ofn 6357 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1512, 13, 143syl 18 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
16 f1ofn 6357 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1712, 16syl 17 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
181, 2, 3, 4, 5, 6, 7subfacp1lem1 31678 . . . . . . . 8 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1918simp2d 1174 . . . . . . 7 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
2019eleq2d 2864 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ 𝑥 ∈ (1...(𝑁 + 1))))
2120biimpar 470 . . . . 5 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ (𝐾 ∪ {1, 𝑀}))
22 elun 3951 . . . . 5 (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ (𝑥𝐾𝑥 ∈ {1, 𝑀}))
2321, 22sylib 210 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝑥𝐾𝑥 ∈ {1, 𝑀}))
241, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2b 31680 . . . . . . . 8 ((𝜑𝑥𝐾) → (𝐹𝑥) = (( I ↾ 𝐾)‘𝑥))
25 fvresi 6668 . . . . . . . . 9 (𝑥𝐾 → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2625adantl 474 . . . . . . . 8 ((𝜑𝑥𝐾) → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2724, 26eqtrd 2833 . . . . . . 7 ((𝜑𝑥𝐾) → (𝐹𝑥) = 𝑥)
2827fveq2d 6415 . . . . . 6 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
2928, 27eqtrd 2833 . . . . 5 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = 𝑥)
30 vex 3388 . . . . . . 7 𝑥 ∈ V
3130elpr 4391 . . . . . 6 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
3211simp2d 1174 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = 𝑀)
3332fveq2d 6415 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹‘1)) = (𝐹𝑀))
3411simp3d 1175 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = 1)
3533, 34eqtrd 2833 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹‘1)) = 1)
36 2fveq3 6416 . . . . . . . . . 10 (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹‘1)))
37 id 22 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 = 1)
3836, 37eqeq12d 2814 . . . . . . . . 9 (𝑥 = 1 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘1)) = 1))
3935, 38syl5ibrcom 239 . . . . . . . 8 (𝜑 → (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = 𝑥))
4034fveq2d 6415 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹𝑀)) = (𝐹‘1))
4140, 32eqtrd 2833 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹𝑀)) = 𝑀)
42 2fveq3 6416 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑀)))
43 id 22 . . . . . . . . . 10 (𝑥 = 𝑀𝑥 = 𝑀)
4442, 43eqeq12d 2814 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑀)) = 𝑀))
4541, 44syl5ibrcom 239 . . . . . . . 8 (𝜑 → (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = 𝑥))
4639, 45jaod 886 . . . . . . 7 (𝜑 → ((𝑥 = 1 ∨ 𝑥 = 𝑀) → (𝐹‘(𝐹𝑥)) = 𝑥))
4746imp 396 . . . . . 6 ((𝜑 ∧ (𝑥 = 1 ∨ 𝑥 = 𝑀)) → (𝐹‘(𝐹𝑥)) = 𝑥)
4831, 47sylan2b 588 . . . . 5 ((𝜑𝑥 ∈ {1, 𝑀}) → (𝐹‘(𝐹𝑥)) = 𝑥)
4929, 48jaodan 981 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ {1, 𝑀})) → (𝐹‘(𝐹𝑥)) = 𝑥)
5023, 49syldan 586 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹‘(𝐹𝑥)) = 𝑥)
5112adantr 473 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
52 f1of 6356 . . . . . 6 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5312, 52syl 17 . . . . 5 (𝜑𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5453ffvelrnda 6585 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) ∈ (1...(𝑁 + 1)))
55 f1ocnvfv 6762 . . . 4 ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹𝑥) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5651, 54, 55syl2anc 580 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5750, 56mpd 15 . 2 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
5815, 17, 57eqfnfvd 6540 1 (𝜑𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wo 874   = wceq 1653  wcel 2157  {cab 2785  wne 2971  wral 3089  {crab 3093  Vcvv 3385  cdif 3766  cun 3767  cin 3768  c0 4115  {csn 4368  {cpr 4370  cop 4374  cmpt 4922   I cid 5219  ccnv 5311  cres 5314   Fn wfn 6096  wf 6097  1-1-ontowf1o 6100  cfv 6101  (class class class)co 6878  Fincfn 8195  1c1 10225   + caddc 10227  cmin 10556  cn 11312  2c2 11368  0cn0 11580  ...cfz 12580  chash 13370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-hash 13371
This theorem is referenced by:  subfacp1lem5  31683
  Copyright terms: Public domain W3C validator