Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem4 Structured version   Visualization version   GIF version

Theorem subfacp1lem4 33045
Description: Lemma for subfacp1 33048. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem5.b 𝐵 = {𝑔𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) ≠ 1)}
subfacp1lem5.f 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
Assertion
Ref Expression
subfacp1lem4 (𝜑𝐹 = 𝐹)
Distinct variable groups:   𝑓,𝑔,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦   𝑓,𝑁,𝑔,𝑛,𝑥,𝑦   𝐵,𝑓,𝑔,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑔,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑓,𝑔)   𝐹(𝑛)   𝐾(𝑔)   𝑀(𝑛)

Proof of Theorem subfacp1lem4
StepHypRef Expression
1 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
2 subfac.n . . . . 5 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
3 subfacp1lem.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
4 subfacp1lem1.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 subfacp1lem1.m . . . . 5 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
6 subfacp1lem1.x . . . . 5 𝑀 ∈ V
7 subfacp1lem1.k . . . . 5 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
8 subfacp1lem5.f . . . . 5 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
9 f1oi 6737 . . . . . 6 ( I ↾ 𝐾):𝐾1-1-onto𝐾
109a1i 11 . . . . 5 (𝜑 → ( I ↾ 𝐾):𝐾1-1-onto𝐾)
111, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2a 33042 . . . 4 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
1211simp1d 1140 . . 3 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
13 f1ocnv 6712 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
14 f1ofn 6701 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1512, 13, 143syl 18 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
16 f1ofn 6701 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1712, 16syl 17 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
181, 2, 3, 4, 5, 6, 7subfacp1lem1 33041 . . . . . . . 8 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1918simp2d 1141 . . . . . . 7 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
2019eleq2d 2824 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ 𝑥 ∈ (1...(𝑁 + 1))))
2120biimpar 477 . . . . 5 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ (𝐾 ∪ {1, 𝑀}))
22 elun 4079 . . . . 5 (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ (𝑥𝐾𝑥 ∈ {1, 𝑀}))
2321, 22sylib 217 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝑥𝐾𝑥 ∈ {1, 𝑀}))
241, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2b 33043 . . . . . . . 8 ((𝜑𝑥𝐾) → (𝐹𝑥) = (( I ↾ 𝐾)‘𝑥))
25 fvresi 7027 . . . . . . . . 9 (𝑥𝐾 → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2625adantl 481 . . . . . . . 8 ((𝜑𝑥𝐾) → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2724, 26eqtrd 2778 . . . . . . 7 ((𝜑𝑥𝐾) → (𝐹𝑥) = 𝑥)
2827fveq2d 6760 . . . . . 6 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
2928, 27eqtrd 2778 . . . . 5 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = 𝑥)
30 vex 3426 . . . . . . 7 𝑥 ∈ V
3130elpr 4581 . . . . . 6 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
3211simp2d 1141 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = 𝑀)
3332fveq2d 6760 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹‘1)) = (𝐹𝑀))
3411simp3d 1142 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = 1)
3533, 34eqtrd 2778 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹‘1)) = 1)
36 2fveq3 6761 . . . . . . . . . 10 (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹‘1)))
37 id 22 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 = 1)
3836, 37eqeq12d 2754 . . . . . . . . 9 (𝑥 = 1 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘1)) = 1))
3935, 38syl5ibrcom 246 . . . . . . . 8 (𝜑 → (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = 𝑥))
4034fveq2d 6760 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹𝑀)) = (𝐹‘1))
4140, 32eqtrd 2778 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹𝑀)) = 𝑀)
42 2fveq3 6761 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑀)))
43 id 22 . . . . . . . . . 10 (𝑥 = 𝑀𝑥 = 𝑀)
4442, 43eqeq12d 2754 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑀)) = 𝑀))
4541, 44syl5ibrcom 246 . . . . . . . 8 (𝜑 → (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = 𝑥))
4639, 45jaod 855 . . . . . . 7 (𝜑 → ((𝑥 = 1 ∨ 𝑥 = 𝑀) → (𝐹‘(𝐹𝑥)) = 𝑥))
4746imp 406 . . . . . 6 ((𝜑 ∧ (𝑥 = 1 ∨ 𝑥 = 𝑀)) → (𝐹‘(𝐹𝑥)) = 𝑥)
4831, 47sylan2b 593 . . . . 5 ((𝜑𝑥 ∈ {1, 𝑀}) → (𝐹‘(𝐹𝑥)) = 𝑥)
4929, 48jaodan 954 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ {1, 𝑀})) → (𝐹‘(𝐹𝑥)) = 𝑥)
5023, 49syldan 590 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹‘(𝐹𝑥)) = 𝑥)
5112adantr 480 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
52 f1of 6700 . . . . . 6 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5312, 52syl 17 . . . . 5 (𝜑𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5453ffvelrnda 6943 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) ∈ (1...(𝑁 + 1)))
55 f1ocnvfv 7131 . . . 4 ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹𝑥) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5651, 54, 55syl2anc 583 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5750, 56mpd 15 . 2 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
5815, 17, 57eqfnfvd 6894 1 (𝜑𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  c0 4253  {csn 4558  {cpr 4560  cop 4564  cmpt 5153   I cid 5479  ccnv 5579  cres 5582   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  1c1 10803   + caddc 10805  cmin 11135  cn 11903  2c2 11958  0cn0 12163  ...cfz 13168  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973
This theorem is referenced by:  subfacp1lem5  33046
  Copyright terms: Public domain W3C validator