Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacp1lem4 Structured version   Visualization version   GIF version

Theorem subfacp1lem4 33777
Description: Lemma for subfacp1 33780. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
subfac.n 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
subfacp1lem.a 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
subfacp1lem1.n (𝜑𝑁 ∈ ℕ)
subfacp1lem1.m (𝜑𝑀 ∈ (2...(𝑁 + 1)))
subfacp1lem1.x 𝑀 ∈ V
subfacp1lem1.k 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
subfacp1lem5.b 𝐵 = {𝑔𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔𝑀) ≠ 1)}
subfacp1lem5.f 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
Assertion
Ref Expression
subfacp1lem4 (𝜑𝐹 = 𝐹)
Distinct variable groups:   𝑓,𝑔,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑔,𝑥,𝑦   𝑓,𝑁,𝑔,𝑛,𝑥,𝑦   𝐵,𝑓,𝑔,𝑥,𝑦   𝜑,𝑥,𝑦   𝐷,𝑛   𝑓,𝐾,𝑛,𝑥,𝑦   𝑓,𝑀,𝑔,𝑥,𝑦   𝑆,𝑛,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,𝑛)   𝐵(𝑛)   𝐷(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑓,𝑔)   𝐹(𝑛)   𝐾(𝑔)   𝑀(𝑛)

Proof of Theorem subfacp1lem4
StepHypRef Expression
1 derang.d . . . . 5 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
2 subfac.n . . . . 5 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛)))
3 subfacp1lem.a . . . . 5 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓𝑦) ≠ 𝑦)}
4 subfacp1lem1.n . . . . 5 (𝜑𝑁 ∈ ℕ)
5 subfacp1lem1.m . . . . 5 (𝜑𝑀 ∈ (2...(𝑁 + 1)))
6 subfacp1lem1.x . . . . 5 𝑀 ∈ V
7 subfacp1lem1.k . . . . 5 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀})
8 subfacp1lem5.f . . . . 5 𝐹 = (( I ↾ 𝐾) ∪ {⟨1, 𝑀⟩, ⟨𝑀, 1⟩})
9 f1oi 6822 . . . . . 6 ( I ↾ 𝐾):𝐾1-1-onto𝐾
109a1i 11 . . . . 5 (𝜑 → ( I ↾ 𝐾):𝐾1-1-onto𝐾)
111, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2a 33774 . . . 4 (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹𝑀) = 1))
1211simp1d 1142 . . 3 (𝜑𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
13 f1ocnv 6796 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
14 f1ofn 6785 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1512, 13, 143syl 18 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
16 f1ofn 6785 . . 3 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹 Fn (1...(𝑁 + 1)))
1712, 16syl 17 . 2 (𝜑𝐹 Fn (1...(𝑁 + 1)))
181, 2, 3, 4, 5, 6, 7subfacp1lem1 33773 . . . . . . . 8 (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1)))
1918simp2d 1143 . . . . . . 7 (𝜑 → (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)))
2019eleq2d 2823 . . . . . 6 (𝜑 → (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ 𝑥 ∈ (1...(𝑁 + 1))))
2120biimpar 478 . . . . 5 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝑥 ∈ (𝐾 ∪ {1, 𝑀}))
22 elun 4108 . . . . 5 (𝑥 ∈ (𝐾 ∪ {1, 𝑀}) ↔ (𝑥𝐾𝑥 ∈ {1, 𝑀}))
2321, 22sylib 217 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝑥𝐾𝑥 ∈ {1, 𝑀}))
241, 2, 3, 4, 5, 6, 7, 8, 10subfacp1lem2b 33775 . . . . . . . 8 ((𝜑𝑥𝐾) → (𝐹𝑥) = (( I ↾ 𝐾)‘𝑥))
25 fvresi 7119 . . . . . . . . 9 (𝑥𝐾 → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2625adantl 482 . . . . . . . 8 ((𝜑𝑥𝐾) → (( I ↾ 𝐾)‘𝑥) = 𝑥)
2724, 26eqtrd 2776 . . . . . . 7 ((𝜑𝑥𝐾) → (𝐹𝑥) = 𝑥)
2827fveq2d 6846 . . . . . 6 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
2928, 27eqtrd 2776 . . . . 5 ((𝜑𝑥𝐾) → (𝐹‘(𝐹𝑥)) = 𝑥)
30 vex 3449 . . . . . . 7 𝑥 ∈ V
3130elpr 4609 . . . . . 6 (𝑥 ∈ {1, 𝑀} ↔ (𝑥 = 1 ∨ 𝑥 = 𝑀))
3211simp2d 1143 . . . . . . . . . . 11 (𝜑 → (𝐹‘1) = 𝑀)
3332fveq2d 6846 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹‘1)) = (𝐹𝑀))
3411simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) = 1)
3533, 34eqtrd 2776 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹‘1)) = 1)
36 2fveq3 6847 . . . . . . . . . 10 (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹‘1)))
37 id 22 . . . . . . . . . 10 (𝑥 = 1 → 𝑥 = 1)
3836, 37eqeq12d 2752 . . . . . . . . 9 (𝑥 = 1 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹‘1)) = 1))
3935, 38syl5ibrcom 246 . . . . . . . 8 (𝜑 → (𝑥 = 1 → (𝐹‘(𝐹𝑥)) = 𝑥))
4034fveq2d 6846 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝐹𝑀)) = (𝐹‘1))
4140, 32eqtrd 2776 . . . . . . . . 9 (𝜑 → (𝐹‘(𝐹𝑀)) = 𝑀)
42 2fveq3 6847 . . . . . . . . . 10 (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = (𝐹‘(𝐹𝑀)))
43 id 22 . . . . . . . . . 10 (𝑥 = 𝑀𝑥 = 𝑀)
4442, 43eqeq12d 2752 . . . . . . . . 9 (𝑥 = 𝑀 → ((𝐹‘(𝐹𝑥)) = 𝑥 ↔ (𝐹‘(𝐹𝑀)) = 𝑀))
4541, 44syl5ibrcom 246 . . . . . . . 8 (𝜑 → (𝑥 = 𝑀 → (𝐹‘(𝐹𝑥)) = 𝑥))
4639, 45jaod 857 . . . . . . 7 (𝜑 → ((𝑥 = 1 ∨ 𝑥 = 𝑀) → (𝐹‘(𝐹𝑥)) = 𝑥))
4746imp 407 . . . . . 6 ((𝜑 ∧ (𝑥 = 1 ∨ 𝑥 = 𝑀)) → (𝐹‘(𝐹𝑥)) = 𝑥)
4831, 47sylan2b 594 . . . . 5 ((𝜑𝑥 ∈ {1, 𝑀}) → (𝐹‘(𝐹𝑥)) = 𝑥)
4929, 48jaodan 956 . . . 4 ((𝜑 ∧ (𝑥𝐾𝑥 ∈ {1, 𝑀})) → (𝐹‘(𝐹𝑥)) = 𝑥)
5023, 49syldan 591 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹‘(𝐹𝑥)) = 𝑥)
5112adantr 481 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))
52 f1of 6784 . . . . . 6 (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5312, 52syl 17 . . . . 5 (𝜑𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)))
5453ffvelcdmda 7035 . . . 4 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) ∈ (1...(𝑁 + 1)))
55 f1ocnvfv 7224 . . . 4 ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹𝑥) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5651, 54, 55syl2anc 584 . . 3 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝐹𝑥)) = 𝑥 → (𝐹𝑥) = (𝐹𝑥)))
5750, 56mpd 15 . 2 ((𝜑𝑥 ∈ (1...(𝑁 + 1))) → (𝐹𝑥) = (𝐹𝑥))
5815, 17, 57eqfnfvd 6985 1 (𝜑𝐹 = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wral 3064  {crab 3407  Vcvv 3445  cdif 3907  cun 3908  cin 3909  c0 4282  {csn 4586  {cpr 4588  cop 4592  cmpt 5188   I cid 5530  ccnv 5632  cres 5635   Fn wfn 6491  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Fincfn 8883  1c1 11052   + caddc 11054  cmin 11385  cn 12153  2c2 12208  0cn0 12413  ...cfz 13424  chash 14230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-oadd 8416  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-dju 9837  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-hash 14231
This theorem is referenced by:  subfacp1lem5  33778
  Copyright terms: Public domain W3C validator