Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotacnvval Structured version   Visualization version   GIF version

Theorem ltrniotacnvval 40561
Description: Converse value of the unique translation specified by a value. (Contributed by NM, 21-Feb-2014.)
Hypotheses
Ref Expression
ltrniotaval.l = (le‘𝐾)
ltrniotaval.a 𝐴 = (Atoms‘𝐾)
ltrniotaval.h 𝐻 = (LHyp‘𝐾)
ltrniotaval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
ltrniotaval.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
Assertion
Ref Expression
ltrniotacnvval (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑄) = 𝑃)
Distinct variable groups:   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   ,𝑓   𝑃,𝑓   𝑄,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hint:   𝐹(𝑓)

Proof of Theorem ltrniotacnvval
StepHypRef Expression
1 simp1 1136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 ltrniotaval.l . . . . 5 = (le‘𝐾)
3 ltrniotaval.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 ltrniotaval.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 ltrniotaval.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 ltrniotaval.f . . . . 5 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
72, 3, 4, 5, 6ltrniotacl 40558 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
8 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
98, 4, 5ltrn1o 40103 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
101, 7, 9syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
11 simp2l 1200 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑃𝐴)
128, 3atbase 39268 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1311, 12syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑃 ∈ (Base‘𝐾))
1410, 13jca 511 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)))
152, 3, 4, 5, 6ltrniotaval 40560 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑃) = 𝑄)
16 f1ocnvfv 7215 . 2 ((𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾)) → ((𝐹𝑃) = 𝑄 → (𝐹𝑄) = 𝑃))
1714, 15, 16sylc 65 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐹𝑄) = 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092  ccnv 5618  1-1-ontowf1o 6481  cfv 6482  crio 7305  Basecbs 17120  lecple 17168  Atomscatm 39242  HLchlt 39329  LHypclh 39963  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38932
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138
This theorem is referenced by:  cdlemn9  41184  dihjatcclem3  41399
  Copyright terms: Public domain W3C validator