Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmlasssuc Structured version   Visualization version   GIF version

Theorem fmlasssuc 32629
 Description: The Godel formulas of height 𝑁 are a subset of the Godel formulas of height 𝑁 + 1. (Contributed by AV, 20-Oct-2023.)
Assertion
Ref Expression
fmlasssuc (𝑁 ∈ ω → (Fmla‘𝑁) ⊆ (Fmla‘suc 𝑁))

Proof of Theorem fmlasssuc
Dummy variables 𝑖 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssun1 4146 . 2 (Fmla‘𝑁) ⊆ ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)})
2 fmlasuc 32626 . 2 (𝑁 ∈ ω → (Fmla‘suc 𝑁) = ((Fmla‘𝑁) ∪ {𝑥 ∣ ∃𝑢 ∈ (Fmla‘𝑁)(∃𝑣 ∈ (Fmla‘𝑁)𝑥 = (𝑢𝑔𝑣) ∨ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖𝑢)}))
31, 2sseqtrrid 4018 1 (𝑁 ∈ ω → (Fmla‘𝑁) ⊆ (Fmla‘suc 𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 843   = wceq 1531   ∈ wcel 2108  {cab 2797  ∃wrex 3137   ∪ cun 3932   ⊆ wss 3934  suc csuc 6186  ‘cfv 6348  (class class class)co 7148  ωcom 7572  ⊼𝑔cgna 32574  ∀𝑔cgol 32575  Fmlacfmla 32577 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-map 8400  df-goel 32580  df-goal 32582  df-sat 32583  df-fmla 32585 This theorem is referenced by:  gonarlem  32634  gonar  32635  goalrlem  32636  goalr  32637
 Copyright terms: Public domain W3C validator