Step | Hyp | Ref
| Expression |
1 | | eqidd 2737 |
. 2
⊢ (𝜑 → (Base‘𝑋) = (Base‘𝑋)) |
2 | | eqidd 2737 |
. 2
⊢ (𝜑 → (Hom ‘𝑋) = (Hom ‘𝑋)) |
3 | | relfull 17951 |
. . . . . . . . . . . 12
⊢ Rel
(𝑋 Full 𝑌) |
4 | | relin1 5820 |
. . . . . . . . . . . 12
⊢ (Rel
(𝑋 Full 𝑌) → Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Rel
((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) |
6 | | thincciso2.f |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
7 | | thincciso2.c |
. . . . . . . . . . . . . 14
⊢ 𝐶 = (CatCat‘𝑈) |
8 | | thincciso2.b |
. . . . . . . . . . . . . 14
⊢ 𝐵 = (Base‘𝐶) |
9 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑋) =
(Base‘𝑋) |
10 | | eqid 2736 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑌) =
(Base‘𝑌) |
11 | | thincciso2.u |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
12 | | thincciso2.x |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
13 | | thincciso2.y |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
14 | | thincciso2.i |
. . . . . . . . . . . . . 14
⊢ 𝐼 = (Iso‘𝐶) |
15 | 7, 8, 9, 10, 11, 12, 13, 14 | catciso 18152 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝐹):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))) |
16 | 6, 15 | mpbid 232 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝐹):(Base‘𝑋)–1-1-onto→(Base‘𝑌))) |
17 | 16 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) |
18 | | 1st2ndbr 8063 |
. . . . . . . . . . 11
⊢ ((Rel
((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) → (1st ‘𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd ‘𝐹)) |
19 | 5, 17, 18 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd ‘𝐹)) |
20 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (Hom
‘𝑋) = (Hom
‘𝑋) |
21 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (Hom
‘𝑌) = (Hom
‘𝑌) |
22 | 9, 20, 21 | isffth2 17959 |
. . . . . . . . . 10
⊢
((1st ‘𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd ‘𝐹) ↔ ((1st ‘𝐹)(𝑋 Func 𝑌)(2nd ‘𝐹) ∧ ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)))) |
23 | 19, 22 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → ((1st
‘𝐹)(𝑋 Func 𝑌)(2nd ‘𝐹) ∧ ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)))) |
24 | 23 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
25 | 24 | r19.21bi 3250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑋)) → ∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
26 | 25 | r19.21bi 3250 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
27 | 26 | anasss 466 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
28 | | ovex 7462 |
. . . . . 6
⊢ (𝑥(Hom ‘𝑋)𝑦) ∈ V |
29 | 28 | f1oen 9009 |
. . . . 5
⊢ ((𝑥(2nd ‘𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)) → (𝑥(Hom ‘𝑋)𝑦) ≈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
30 | 27, 29 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(Hom ‘𝑋)𝑦) ≈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
31 | | thincciso2.yt |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ ThinCat) |
32 | 31 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑌 ∈ ThinCat) |
33 | 23 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐹)(𝑋 Func 𝑌)(2nd ‘𝐹)) |
34 | 9, 10, 33 | funcf1 17907 |
. . . . . . . 8
⊢ (𝜑 → (1st
‘𝐹):(Base‘𝑋)⟶(Base‘𝑌)) |
35 | 34 | ffvelcdmda 7102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑋)) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝑌)) |
36 | 35 | adantrr 717 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ((1st ‘𝐹)‘𝑥) ∈ (Base‘𝑌)) |
37 | 34 | ffvelcdmda 7102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘𝑋)) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝑌)) |
38 | 37 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ((1st ‘𝐹)‘𝑦) ∈ (Base‘𝑌)) |
39 | 32, 36, 38, 10, 21 | thincmo 49050 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ∃*𝑓 𝑓 ∈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦))) |
40 | | modom2 9277 |
. . . . 5
⊢
(∃*𝑓 𝑓 ∈ (((1st
‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)) ↔ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)) ≼ 1o) |
41 | 39, 40 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)) ≼ 1o) |
42 | | endomtr 9048 |
. . . 4
⊢ (((𝑥(Hom ‘𝑋)𝑦) ≈ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)) ∧ (((1st ‘𝐹)‘𝑥)(Hom ‘𝑌)((1st ‘𝐹)‘𝑦)) ≼ 1o) → (𝑥(Hom ‘𝑋)𝑦) ≼ 1o) |
43 | 30, 41, 42 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(Hom ‘𝑋)𝑦) ≼ 1o) |
44 | | modom2 9277 |
. . 3
⊢
(∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑋)𝑦) ↔ (𝑥(Hom ‘𝑋)𝑦) ≼ 1o) |
45 | 43, 44 | sylibr 234 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑋)𝑦)) |
46 | 33 | funcrcl2 48885 |
. 2
⊢ (𝜑 → 𝑋 ∈ Cat) |
47 | 1, 2, 45, 46 | isthincd 49058 |
1
⊢ (𝜑 → 𝑋 ∈ ThinCat) |