Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincciso2 Structured version   Visualization version   GIF version

Theorem thincciso2 49077
Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17249. (Contributed by Zhi Wang, 18-Oct-2025.)
Hypotheses
Ref Expression
thincciso2.c 𝐶 = (CatCat‘𝑈)
thincciso2.b 𝐵 = (Base‘𝐶)
thincciso2.u (𝜑𝑈𝑉)
thincciso2.x (𝜑𝑋𝐵)
thincciso2.y (𝜑𝑌𝐵)
thincciso2.i 𝐼 = (Iso‘𝐶)
thincciso2.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
thincciso2.yt (𝜑𝑌 ∈ ThinCat)
Assertion
Ref Expression
thincciso2 (𝜑𝑋 ∈ ThinCat)

Proof of Theorem thincciso2
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (𝜑 → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2737 . 2 (𝜑 → (Hom ‘𝑋) = (Hom ‘𝑋))
3 relfull 17951 . . . . . . . . . . . 12 Rel (𝑋 Full 𝑌)
4 relin1 5820 . . . . . . . . . . . 12 (Rel (𝑋 Full 𝑌) → Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
53, 4ax-mp 5 . . . . . . . . . . 11 Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))
6 thincciso2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
7 thincciso2.c . . . . . . . . . . . . . 14 𝐶 = (CatCat‘𝑈)
8 thincciso2.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐶)
9 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑋) = (Base‘𝑋)
10 eqid 2736 . . . . . . . . . . . . . 14 (Base‘𝑌) = (Base‘𝑌)
11 thincciso2.u . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
12 thincciso2.x . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
13 thincciso2.y . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
14 thincciso2.i . . . . . . . . . . . . . 14 𝐼 = (Iso‘𝐶)
157, 8, 9, 10, 11, 12, 13, 14catciso 18152 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
166, 15mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
1716simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
18 1st2ndbr 8063 . . . . . . . . . . 11 ((Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
195, 17, 18sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
20 eqid 2736 . . . . . . . . . . 11 (Hom ‘𝑋) = (Hom ‘𝑋)
21 eqid 2736 . . . . . . . . . . 11 (Hom ‘𝑌) = (Hom ‘𝑌)
229, 20, 21isffth2 17959 . . . . . . . . . 10 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
2319, 22sylib 218 . . . . . . . . 9 (𝜑 → ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
2423simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
2524r19.21bi 3250 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑋)) → ∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
2625r19.21bi 3250 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
2726anasss 466 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
28 ovex 7462 . . . . . 6 (𝑥(Hom ‘𝑋)𝑦) ∈ V
2928f1oen 9009 . . . . 5 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) → (𝑥(Hom ‘𝑋)𝑦) ≈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
3027, 29syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(Hom ‘𝑋)𝑦) ≈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
31 thincciso2.yt . . . . . . 7 (𝜑𝑌 ∈ ThinCat)
3231adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑌 ∈ ThinCat)
3323simpld 494 . . . . . . . . 9 (𝜑 → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
349, 10, 33funcf1 17907 . . . . . . . 8 (𝜑 → (1st𝐹):(Base‘𝑋)⟶(Base‘𝑌))
3534ffvelcdmda 7102 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑋)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝑌))
3635adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝑌))
3734ffvelcdmda 7102 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝑋)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝑌))
3837adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝑌))
3932, 36, 38, 10, 21thincmo 49050 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ∃*𝑓 𝑓 ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
40 modom2 9277 . . . . 5 (∃*𝑓 𝑓 ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ↔ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ≼ 1o)
4139, 40sylib 218 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ≼ 1o)
42 endomtr 9048 . . . 4 (((𝑥(Hom ‘𝑋)𝑦) ≈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ∧ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ≼ 1o) → (𝑥(Hom ‘𝑋)𝑦) ≼ 1o)
4330, 41, 42syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(Hom ‘𝑋)𝑦) ≼ 1o)
44 modom2 9277 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑋)𝑦) ↔ (𝑥(Hom ‘𝑋)𝑦) ≼ 1o)
4543, 44sylibr 234 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑋)𝑦))
4633funcrcl2 48885 . 2 (𝜑𝑋 ∈ Cat)
471, 2, 45, 46isthincd 49058 1 (𝜑𝑋 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ∃*wmo 2537  wral 3060  cin 3949   class class class wbr 5141  Rel wrel 5688  1-1-ontowf1o 6558  cfv 6559  (class class class)co 7429  1st c1st 8008  2nd c2nd 8009  1oc1o 8495  cen 8978  cdom 8979  Basecbs 17243  Hom chom 17304  Isociso 17786   Func cfunc 17895   Full cful 17945   Faith cfth 17946  CatCatccatc 18139  ThinCatcthinc 49040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4906  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-om 7884  df-1st 8010  df-2nd 8011  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-er 8741  df-map 8864  df-ixp 8934  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-struct 17180  df-slot 17215  df-ndx 17227  df-base 17244  df-hom 17317  df-cco 17318  df-cat 17707  df-cid 17708  df-sect 17787  df-inv 17788  df-iso 17789  df-func 17899  df-idfu 17900  df-cofu 17901  df-full 17947  df-fth 17948  df-catc 18140  df-thinc 49041
This theorem is referenced by:  thincciso3  49078  thincciso4  49079
  Copyright terms: Public domain W3C validator