Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincciso2 Structured version   Visualization version   GIF version

Theorem thincciso2 49616
Description: Categories isomorphic to a thin category are thin. Example 3.26(2) of [Adamek] p. 33. Note that "thincciso2.u" is redundant thanks to elbasfv 17133. (Contributed by Zhi Wang, 18-Oct-2025.)
Hypotheses
Ref Expression
thincciso2.c 𝐶 = (CatCat‘𝑈)
thincciso2.b 𝐵 = (Base‘𝐶)
thincciso2.u (𝜑𝑈𝑉)
thincciso2.x (𝜑𝑋𝐵)
thincciso2.y (𝜑𝑌𝐵)
thincciso2.i 𝐼 = (Iso‘𝐶)
thincciso2.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
thincciso2.yt (𝜑𝑌 ∈ ThinCat)
Assertion
Ref Expression
thincciso2 (𝜑𝑋 ∈ ThinCat)

Proof of Theorem thincciso2
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . 2 (𝜑 → (Base‘𝑋) = (Base‘𝑋))
2 eqidd 2734 . 2 (𝜑 → (Hom ‘𝑋) = (Hom ‘𝑋))
3 relfull 17825 . . . . . . . . . . . 12 Rel (𝑋 Full 𝑌)
4 relin1 5758 . . . . . . . . . . . 12 (Rel (𝑋 Full 𝑌) → Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
53, 4ax-mp 5 . . . . . . . . . . 11 Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))
6 thincciso2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
7 thincciso2.c . . . . . . . . . . . . . 14 𝐶 = (CatCat‘𝑈)
8 thincciso2.b . . . . . . . . . . . . . 14 𝐵 = (Base‘𝐶)
9 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝑋) = (Base‘𝑋)
10 eqid 2733 . . . . . . . . . . . . . 14 (Base‘𝑌) = (Base‘𝑌)
11 thincciso2.u . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
12 thincciso2.x . . . . . . . . . . . . . 14 (𝜑𝑋𝐵)
13 thincciso2.y . . . . . . . . . . . . . 14 (𝜑𝑌𝐵)
14 thincciso2.i . . . . . . . . . . . . . 14 𝐼 = (Iso‘𝐶)
157, 8, 9, 10, 11, 12, 13, 14catciso 18026 . . . . . . . . . . . . 13 (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):(Base‘𝑋)–1-1-onto→(Base‘𝑌))))
166, 15mpbid 232 . . . . . . . . . . . 12 (𝜑 → (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st𝐹):(Base‘𝑋)–1-1-onto→(Base‘𝑌)))
1716simpld 494 . . . . . . . . . . 11 (𝜑𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)))
18 1st2ndbr 7983 . . . . . . . . . . 11 ((Rel ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ 𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))) → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
195, 17, 18sylancr 587 . . . . . . . . . 10 (𝜑 → (1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹))
20 eqid 2733 . . . . . . . . . . 11 (Hom ‘𝑋) = (Hom ‘𝑋)
21 eqid 2733 . . . . . . . . . . 11 (Hom ‘𝑌) = (Hom ‘𝑌)
229, 20, 21isffth2 17833 . . . . . . . . . 10 ((1st𝐹)((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))(2nd𝐹) ↔ ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
2319, 22sylib 218 . . . . . . . . 9 (𝜑 → ((1st𝐹)(𝑋 Func 𝑌)(2nd𝐹) ∧ ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦))))
2423simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑋)∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
2524r19.21bi 3225 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑋)) → ∀𝑦 ∈ (Base‘𝑋)(𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
2625r19.21bi 3225 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑋)) ∧ 𝑦 ∈ (Base‘𝑋)) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
2726anasss 466 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
28 ovex 7388 . . . . . 6 (𝑥(Hom ‘𝑋)𝑦) ∈ V
2928f1oen 8905 . . . . 5 ((𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝑋)𝑦)–1-1-onto→(((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) → (𝑥(Hom ‘𝑋)𝑦) ≈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
3027, 29syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(Hom ‘𝑋)𝑦) ≈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
31 thincciso2.yt . . . . . . 7 (𝜑𝑌 ∈ ThinCat)
3231adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → 𝑌 ∈ ThinCat)
3323simpld 494 . . . . . . . . 9 (𝜑 → (1st𝐹)(𝑋 Func 𝑌)(2nd𝐹))
349, 10, 33funcf1 17781 . . . . . . . 8 (𝜑 → (1st𝐹):(Base‘𝑋)⟶(Base‘𝑌))
3534ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑋)) → ((1st𝐹)‘𝑥) ∈ (Base‘𝑌))
3635adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝑌))
3734ffvelcdmda 7026 . . . . . . 7 ((𝜑𝑦 ∈ (Base‘𝑋)) → ((1st𝐹)‘𝑦) ∈ (Base‘𝑌))
3837adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝑌))
3932, 36, 38, 10, 21thincmo 49589 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ∃*𝑓 𝑓 ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)))
40 modom2 9147 . . . . 5 (∃*𝑓 𝑓 ∈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ↔ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ≼ 1o)
4139, 40sylib 218 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ≼ 1o)
42 endomtr 8945 . . . 4 (((𝑥(Hom ‘𝑋)𝑦) ≈ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ∧ (((1st𝐹)‘𝑥)(Hom ‘𝑌)((1st𝐹)‘𝑦)) ≼ 1o) → (𝑥(Hom ‘𝑋)𝑦) ≼ 1o)
4330, 41, 42syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → (𝑥(Hom ‘𝑋)𝑦) ≼ 1o)
44 modom2 9147 . . 3 (∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑋)𝑦) ↔ (𝑥(Hom ‘𝑋)𝑦) ≼ 1o)
4543, 44sylibr 234 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑋) ∧ 𝑦 ∈ (Base‘𝑋))) → ∃*𝑓 𝑓 ∈ (𝑥(Hom ‘𝑋)𝑦))
4633funcrcl2 49240 . 2 (𝜑𝑋 ∈ Cat)
471, 2, 45, 46isthincd 49597 1 (𝜑𝑋 ∈ ThinCat)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ∃*wmo 2535  wral 3048  cin 3897   class class class wbr 5095  Rel wrel 5626  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  1st c1st 7928  2nd c2nd 7929  1oc1o 8387  cen 8876  cdom 8877  Basecbs 17127  Hom chom 17179  Isociso 17661   Func cfunc 17769   Full cful 17819   Faith cfth 17820  CatCatccatc 18013  ThinCatcthinc 49578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-hom 17192  df-cco 17193  df-cat 17582  df-cid 17583  df-sect 17662  df-inv 17663  df-iso 17664  df-func 17773  df-idfu 17774  df-cofu 17775  df-full 17821  df-fth 17822  df-catc 18014  df-thinc 49579
This theorem is referenced by:  thincciso3  49617  thincciso4  49618
  Copyright terms: Public domain W3C validator