| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufunclem | Structured version Visualization version GIF version | ||
| Description: If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| eufunc.f | ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| eufunc.a | ⊢ 𝐴 = (Base‘𝐶) |
| eufunc.0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| eufunc.b | ⊢ 𝐵 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| eufunclem | ⊢ (𝜑 → 𝐵 ≼ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝐷Δfunc𝐶) = (𝐷Δfunc𝐶) | |
| 2 | eufunc.f | . . . . . 6 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | |
| 3 | euex 2570 | . . . . . 6 ⊢ (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) → ∃𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| 5 | relfunc 17824 | . . . . . . . 8 ⊢ Rel (𝐶 Func 𝐷) | |
| 6 | 1st2ndbr 8021 | . . . . . . . 8 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (1st ‘𝑓)(𝐶 Func 𝐷)(2nd ‘𝑓)) | |
| 7 | 5, 6 | mpan 690 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (1st ‘𝑓)(𝐶 Func 𝐷)(2nd ‘𝑓)) |
| 8 | 7 | funcrcl3 49066 | . . . . . 6 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → 𝐷 ∈ Cat) |
| 9 | 8 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑓 𝑓 ∈ (𝐶 Func 𝐷) → 𝐷 ∈ Cat) |
| 10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 11 | 7 | funcrcl2 49065 | . . . . . 6 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → 𝐶 ∈ Cat) |
| 12 | 11 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑓 𝑓 ∈ (𝐶 Func 𝐷) → 𝐶 ∈ Cat) |
| 13 | 4, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 14 | eufunc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 15 | eufunc.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 16 | eufunc.0 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 17 | 1, 10, 13, 14, 15, 16 | diag1f1 49293 | . . 3 ⊢ (𝜑 → (1st ‘(𝐷Δfunc𝐶)):𝐵–1-1→(𝐶 Func 𝐷)) |
| 18 | ovex 7420 | . . . 4 ⊢ (𝐶 Func 𝐷) ∈ V | |
| 19 | 18 | f1dom 8945 | . . 3 ⊢ ((1st ‘(𝐷Δfunc𝐶)):𝐵–1-1→(𝐶 Func 𝐷) → 𝐵 ≼ (𝐶 Func 𝐷)) |
| 20 | 17, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ≼ (𝐶 Func 𝐷)) |
| 21 | euen1b 8999 | . . 3 ⊢ ((𝐶 Func 𝐷) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | |
| 22 | 2, 21 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐶 Func 𝐷) ≈ 1o) |
| 23 | domentr 8984 | . 2 ⊢ ((𝐵 ≼ (𝐶 Func 𝐷) ∧ (𝐶 Func 𝐷) ≈ 1o) → 𝐵 ≼ 1o) | |
| 24 | 20, 22, 23 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐵 ≼ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 ≠ wne 2925 ∅c0 4296 class class class wbr 5107 Rel wrel 5643 –1-1→wf1 6508 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 1oc1o 8427 ≈ cen 8915 ≼ cdom 8916 Basecbs 17179 Catccat 17625 Func cfunc 17816 Δfunccdiag 18173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-hom 17244 df-cco 17245 df-cat 17629 df-cid 17630 df-func 17820 df-nat 17908 df-fuc 17909 df-xpc 18133 df-1stf 18134 df-curf 18175 df-diag 18177 |
| This theorem is referenced by: eufunc 49508 |
| Copyright terms: Public domain | W3C validator |