| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufunclem | Structured version Visualization version GIF version | ||
| Description: If there exists a unique functor from a non-empty category, then the base of the target category is at most a singleton. (Contributed by Zhi Wang, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| eufunc.f | ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| eufunc.a | ⊢ 𝐴 = (Base‘𝐶) |
| eufunc.0 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| eufunc.b | ⊢ 𝐵 = (Base‘𝐷) |
| Ref | Expression |
|---|---|
| eufunclem | ⊢ (𝜑 → 𝐵 ≼ 1o) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ (𝐷Δfunc𝐶) = (𝐷Δfunc𝐶) | |
| 2 | eufunc.f | . . . . . 6 ⊢ (𝜑 → ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | |
| 3 | euex 2577 | . . . . . 6 ⊢ (∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷) → ∃𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝐶 Func 𝐷)) |
| 5 | relfunc 17880 | . . . . . . . 8 ⊢ Rel (𝐶 Func 𝐷) | |
| 6 | 1st2ndbr 8046 | . . . . . . . 8 ⊢ ((Rel (𝐶 Func 𝐷) ∧ 𝑓 ∈ (𝐶 Func 𝐷)) → (1st ‘𝑓)(𝐶 Func 𝐷)(2nd ‘𝑓)) | |
| 7 | 5, 6 | mpan 690 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → (1st ‘𝑓)(𝐶 Func 𝐷)(2nd ‘𝑓)) |
| 8 | 7 | funcrcl3 49012 | . . . . . 6 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → 𝐷 ∈ Cat) |
| 9 | 8 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑓 𝑓 ∈ (𝐶 Func 𝐷) → 𝐷 ∈ Cat) |
| 10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ Cat) |
| 11 | 7 | funcrcl2 49011 | . . . . . 6 ⊢ (𝑓 ∈ (𝐶 Func 𝐷) → 𝐶 ∈ Cat) |
| 12 | 11 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑓 𝑓 ∈ (𝐶 Func 𝐷) → 𝐶 ∈ Cat) |
| 13 | 4, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 14 | eufunc.b | . . . 4 ⊢ 𝐵 = (Base‘𝐷) | |
| 15 | eufunc.a | . . . 4 ⊢ 𝐴 = (Base‘𝐶) | |
| 16 | eufunc.0 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 17 | 1, 10, 13, 14, 15, 16 | diag1f1 49185 | . . 3 ⊢ (𝜑 → (1st ‘(𝐷Δfunc𝐶)):𝐵–1-1→(𝐶 Func 𝐷)) |
| 18 | ovex 7443 | . . . 4 ⊢ (𝐶 Func 𝐷) ∈ V | |
| 19 | 18 | f1dom 8993 | . . 3 ⊢ ((1st ‘(𝐷Δfunc𝐶)):𝐵–1-1→(𝐶 Func 𝐷) → 𝐵 ≼ (𝐶 Func 𝐷)) |
| 20 | 17, 19 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ≼ (𝐶 Func 𝐷)) |
| 21 | euen1b 9047 | . . 3 ⊢ ((𝐶 Func 𝐷) ≈ 1o ↔ ∃!𝑓 𝑓 ∈ (𝐶 Func 𝐷)) | |
| 22 | 2, 21 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐶 Func 𝐷) ≈ 1o) |
| 23 | domentr 9032 | . 2 ⊢ ((𝐵 ≼ (𝐶 Func 𝐷) ∧ (𝐶 Func 𝐷) ≈ 1o) → 𝐵 ≼ 1o) | |
| 24 | 20, 22, 23 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐵 ≼ 1o) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2568 ≠ wne 2933 ∅c0 4313 class class class wbr 5124 Rel wrel 5664 –1-1→wf1 6533 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 1oc1o 8478 ≈ cen 8961 ≼ cdom 8962 Basecbs 17233 Catccat 17681 Func cfunc 17872 Δfunccdiag 18229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-hom 17300 df-cco 17301 df-cat 17685 df-cid 17686 df-func 17876 df-nat 17964 df-fuc 17965 df-xpc 18189 df-1stf 18190 df-curf 18231 df-diag 18233 |
| This theorem is referenced by: eufunc 49374 |
| Copyright terms: Public domain | W3C validator |