| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isinito4 | Structured version Visualization version GIF version | ||
| Description: The predicate "is an initial object" of a category, using universal property. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| isinito4.1 | ⊢ (𝜑 → 1 ∈ TermCat) |
| isinito4.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘ 1 )) |
| isinito4.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) |
| Ref | Expression |
|---|---|
| isinito4 | ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (SetCat‘1o) = (SetCat‘1o) | |
| 2 | eqid 2730 | . . 3 ⊢ ((1st ‘((SetCat‘1o)Δfunc𝐶))‘∅) = ((1st ‘((SetCat‘1o)Δfunc𝐶))‘∅) | |
| 3 | 1, 2 | isinito3 49378 | . 2 ⊢ (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (((1st ‘((SetCat‘1o)Δfunc𝐶))‘∅)(𝐶 UP (SetCat‘1o))∅)) |
| 4 | 1 | setc1obas 49370 | . . . 4 ⊢ 1o = (Base‘(SetCat‘1o)) |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘ 1 ) = (Base‘ 1 ) | |
| 6 | 0lt1o 8479 | . . . . 5 ⊢ ∅ ∈ 1o | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ (𝜑 → ∅ ∈ 1o) |
| 8 | isinito4.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (Base‘ 1 )) | |
| 9 | isinito4.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 1 )) | |
| 10 | 9 | func1st2nd 48993 | . . . . . 6 ⊢ (𝜑 → (1st ‘𝐹)(𝐶 Func 1 )(2nd ‘𝐹)) |
| 11 | 10 | funcrcl2 48996 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 12 | 1, 2, 11 | funcsetc1ocl 49374 | . . . 4 ⊢ (𝜑 → ((1st ‘((SetCat‘1o)Δfunc𝐶))‘∅) ∈ (𝐶 Func (SetCat‘1o))) |
| 13 | setc1oterm 49369 | . . . . 5 ⊢ (SetCat‘1o) ∈ TermCat | |
| 14 | 13 | a1i 11 | . . . 4 ⊢ (𝜑 → (SetCat‘1o) ∈ TermCat) |
| 15 | isinito4.1 | . . . 4 ⊢ (𝜑 → 1 ∈ TermCat) | |
| 16 | 4, 5, 7, 8, 12, 9, 14, 15 | uobeqterm 49424 | . . 3 ⊢ (𝜑 → dom (((1st ‘((SetCat‘1o)Δfunc𝐶))‘∅)(𝐶 UP (SetCat‘1o))∅) = dom (𝐹(𝐶 UP 1 )𝑋)) |
| 17 | 16 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐼 ∈ dom (((1st ‘((SetCat‘1o)Δfunc𝐶))‘∅)(𝐶 UP (SetCat‘1o))∅) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) |
| 18 | 3, 17 | bitrid 283 | 1 ⊢ (𝜑 → (𝐼 ∈ (InitO‘𝐶) ↔ 𝐼 ∈ dom (𝐹(𝐶 UP 1 )𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∅c0 4304 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 1oc1o 8436 Basecbs 17185 Func cfunc 17822 InitOcinito 17949 SetCatcsetc 18043 Δfunccdiag 18179 UP cup 49081 TermCatctermc 49350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-ot 4606 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-homf 17637 df-comf 17638 df-oppc 17679 df-sect 17715 df-inv 17716 df-iso 17717 df-cic 17764 df-func 17826 df-idfu 17827 df-cofu 17828 df-full 17874 df-fth 17875 df-nat 17914 df-fuc 17915 df-inito 17952 df-termo 17953 df-setc 18044 df-catc 18067 df-xpc 18139 df-1stf 18140 df-curf 18181 df-diag 18183 df-up 49082 df-thinc 49296 df-termc 49351 |
| This theorem is referenced by: isinito4a 49426 initocmd 49538 |
| Copyright terms: Public domain | W3C validator |