MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   GIF version

Theorem ablfac1lem 19986
Description: Lemma for ablfac1b 19988. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1.m 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
ablfac1.n 𝑁 = ((♯‘𝐵) / 𝑀)
Assertion
Ref Expression
ablfac1lem ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)   𝑀(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
2 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
32sselda 3930 . . . . . 6 ((𝜑𝑃𝐴) → 𝑃 ∈ ℙ)
4 prmnn 16589 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℕ)
6 ablfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19701 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac1.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
98grpbn0 18883 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
11 ablfac1.f . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
12 hashnncl 14277 . . . . . . . . 9 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 257 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1514adantr 480 . . . . . 6 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℕ)
163, 15pccld 16766 . . . . 5 ((𝜑𝑃𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
175, 16nnexpcld 14156 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
181, 17eqeltrid 2837 . . 3 ((𝜑𝑃𝐴) → 𝑀 ∈ ℕ)
19 ablfac1.n . . . 4 𝑁 = ((♯‘𝐵) / 𝑀)
20 pcdvds 16780 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
213, 15, 20syl2anc 584 . . . . . 6 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
221, 21eqbrtrid 5130 . . . . 5 ((𝜑𝑃𝐴) → 𝑀 ∥ (♯‘𝐵))
23 nndivdvds 16176 . . . . . 6 (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2415, 18, 23syl2anc 584 . . . . 5 ((𝜑𝑃𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2522, 24mpbid 232 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ)
2619, 25eqeltrid 2837 . . 3 ((𝜑𝑃𝐴) → 𝑁 ∈ ℕ)
2718, 26jca 511 . 2 ((𝜑𝑃𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
281oveq1i 7364 . . 3 (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁)
29 pcndvds2 16784 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
303, 15, 29syl2anc 584 . . . . . 6 ((𝜑𝑃𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
311oveq2i 7365 . . . . . . . 8 ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3219, 31eqtri 2756 . . . . . . 7 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3332breq2i 5103 . . . . . 6 (𝑃𝑁𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3430, 33sylnibr 329 . . . . 5 ((𝜑𝑃𝐴) → ¬ 𝑃𝑁)
3526nnzd 12503 . . . . . 6 ((𝜑𝑃𝐴) → 𝑁 ∈ ℤ)
36 coprm 16626 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
373, 35, 36syl2anc 584 . . . . 5 ((𝜑𝑃𝐴) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
3834, 37mpbid 232 . . . 4 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
39 prmz 16590 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
403, 39syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
41 rpexp1i 16638 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4240, 35, 16, 41syl3anc 1373 . . . 4 ((𝜑𝑃𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4338, 42mpd 15 . . 3 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)
4428, 43eqtrid 2780 . 2 ((𝜑𝑃𝐴) → (𝑀 gcd 𝑁) = 1)
4519oveq2i 7365 . . 3 (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀))
4615nncnd 12150 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℂ)
4718nncnd 12150 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ∈ ℂ)
4818nnne0d 12184 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ≠ 0)
4946, 47, 48divcan2d 11908 . . 3 ((𝜑𝑃𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵))
5045, 49eqtr2id 2781 . 2 ((𝜑𝑃𝐴) → (♯‘𝐵) = (𝑀 · 𝑁))
5127, 44, 503jca 1128 1 ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  {crab 3396  wss 3898  c0 4282   class class class wbr 5095  cmpt 5176  cfv 6488  (class class class)co 7354  Fincfn 8877  1c1 11016   · cmul 11020   / cdiv 11783  cn 12134  0cn0 12390  cz 12477  cexp 13972  chash 14241  cdvds 16167   gcd cgcd 16409  cprime 16586   pCnt cpc 16752  Basecbs 17124  Grpcgrp 18850  odcod 19440  Abelcabl 19697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-q 12851  df-rp 12895  df-fz 13412  df-fl 13700  df-mod 13778  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-dvds 16168  df-gcd 16410  df-prm 16587  df-pc 16753  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-abl 19699
This theorem is referenced by:  ablfac1a  19987  ablfac1b  19988
  Copyright terms: Public domain W3C validator