| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfac1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for ablfac1b 19988. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
| ablfac1.m | ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) |
| ablfac1.n | ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) |
| Ref | Expression |
|---|---|
| ablfac1lem | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablfac1.m | . . . 4 ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
| 2 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
| 3 | 2 | sselda 3930 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℙ) |
| 4 | prmnn 16589 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℕ) |
| 6 | ablfac1.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 7 | ablgrp 19701 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | ablfac1.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
| 9 | 8 | grpbn0 18883 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 10 | 6, 7, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 11 | ablfac1.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 12 | hashnncl 14277 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
| 14 | 10, 13 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℕ) |
| 16 | 3, 15 | pccld 16766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) |
| 17 | 5, 16 | nnexpcld 14156 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
| 18 | 1, 17 | eqeltrid 2837 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℕ) |
| 19 | ablfac1.n | . . . 4 ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) | |
| 20 | pcdvds 16780 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) | |
| 21 | 3, 15, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
| 22 | 1, 21 | eqbrtrid 5130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∥ (♯‘𝐵)) |
| 23 | nndivdvds 16176 | . . . . . 6 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) | |
| 24 | 15, 18, 23 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) |
| 25 | 22, 24 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ) |
| 26 | 19, 25 | eqeltrid 2837 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℕ) |
| 27 | 18, 26 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
| 28 | 1 | oveq1i 7364 | . . 3 ⊢ (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) |
| 29 | pcndvds2 16784 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) | |
| 30 | 3, 15, 29 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 31 | 1 | oveq2i 7365 | . . . . . . . 8 ⊢ ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 32 | 19, 31 | eqtri 2756 | . . . . . . 7 ⊢ 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 33 | 32 | breq2i 5103 | . . . . . 6 ⊢ (𝑃 ∥ 𝑁 ↔ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 34 | 30, 33 | sylnibr 329 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ 𝑁) |
| 35 | 26 | nnzd 12503 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℤ) |
| 36 | coprm 16626 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | |
| 37 | 3, 35, 36 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |
| 38 | 34, 37 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 gcd 𝑁) = 1) |
| 39 | prmz 16590 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 40 | 3, 39 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℤ) |
| 41 | rpexp1i 16638 | . . . . 5 ⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) | |
| 42 | 40, 35, 16, 41 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) |
| 43 | 38, 42 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1) |
| 44 | 28, 43 | eqtrid 2780 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 gcd 𝑁) = 1) |
| 45 | 19 | oveq2i 7365 | . . 3 ⊢ (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀)) |
| 46 | 15 | nncnd 12150 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℂ) |
| 47 | 18 | nncnd 12150 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℂ) |
| 48 | 18 | nnne0d 12184 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ≠ 0) |
| 49 | 46, 47, 48 | divcan2d 11908 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵)) |
| 50 | 45, 49 | eqtr2id 2781 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = (𝑀 · 𝑁)) |
| 51 | 27, 44, 50 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {crab 3396 ⊆ wss 3898 ∅c0 4282 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 Fincfn 8877 1c1 11016 · cmul 11020 / cdiv 11783 ℕcn 12134 ℕ0cn0 12390 ℤcz 12477 ↑cexp 13972 ♯chash 14241 ∥ cdvds 16167 gcd cgcd 16409 ℙcprime 16586 pCnt cpc 16752 Basecbs 17124 Grpcgrp 18850 odcod 19440 Abelcabl 19697 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-fz 13412 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-dvds 16168 df-gcd 16410 df-prm 16587 df-pc 16753 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-abl 19699 |
| This theorem is referenced by: ablfac1a 19987 ablfac1b 19988 |
| Copyright terms: Public domain | W3C validator |