MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   GIF version

Theorem ablfac1lem 20088
Description: Lemma for ablfac1b 20090. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1.m 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
ablfac1.n 𝑁 = ((♯‘𝐵) / 𝑀)
Assertion
Ref Expression
ablfac1lem ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)   𝑀(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
2 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
32sselda 3983 . . . . . 6 ((𝜑𝑃𝐴) → 𝑃 ∈ ℙ)
4 prmnn 16711 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℕ)
6 ablfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19803 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac1.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
98grpbn0 18984 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
11 ablfac1.f . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
12 hashnncl 14405 . . . . . . . . 9 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 257 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1514adantr 480 . . . . . 6 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℕ)
163, 15pccld 16888 . . . . 5 ((𝜑𝑃𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
175, 16nnexpcld 14284 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
181, 17eqeltrid 2845 . . 3 ((𝜑𝑃𝐴) → 𝑀 ∈ ℕ)
19 ablfac1.n . . . 4 𝑁 = ((♯‘𝐵) / 𝑀)
20 pcdvds 16902 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
213, 15, 20syl2anc 584 . . . . . 6 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
221, 21eqbrtrid 5178 . . . . 5 ((𝜑𝑃𝐴) → 𝑀 ∥ (♯‘𝐵))
23 nndivdvds 16299 . . . . . 6 (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2415, 18, 23syl2anc 584 . . . . 5 ((𝜑𝑃𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2522, 24mpbid 232 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ)
2619, 25eqeltrid 2845 . . 3 ((𝜑𝑃𝐴) → 𝑁 ∈ ℕ)
2718, 26jca 511 . 2 ((𝜑𝑃𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
281oveq1i 7441 . . 3 (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁)
29 pcndvds2 16906 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
303, 15, 29syl2anc 584 . . . . . 6 ((𝜑𝑃𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
311oveq2i 7442 . . . . . . . 8 ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3219, 31eqtri 2765 . . . . . . 7 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3332breq2i 5151 . . . . . 6 (𝑃𝑁𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3430, 33sylnibr 329 . . . . 5 ((𝜑𝑃𝐴) → ¬ 𝑃𝑁)
3526nnzd 12640 . . . . . 6 ((𝜑𝑃𝐴) → 𝑁 ∈ ℤ)
36 coprm 16748 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
373, 35, 36syl2anc 584 . . . . 5 ((𝜑𝑃𝐴) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
3834, 37mpbid 232 . . . 4 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
39 prmz 16712 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
403, 39syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
41 rpexp1i 16760 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4240, 35, 16, 41syl3anc 1373 . . . 4 ((𝜑𝑃𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4338, 42mpd 15 . . 3 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)
4428, 43eqtrid 2789 . 2 ((𝜑𝑃𝐴) → (𝑀 gcd 𝑁) = 1)
4519oveq2i 7442 . . 3 (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀))
4615nncnd 12282 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℂ)
4718nncnd 12282 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ∈ ℂ)
4818nnne0d 12316 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ≠ 0)
4946, 47, 48divcan2d 12045 . . 3 ((𝜑𝑃𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵))
5045, 49eqtr2id 2790 . 2 ((𝜑𝑃𝐴) → (♯‘𝐵) = (𝑀 · 𝑁))
5127, 44, 503jca 1129 1 ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436  wss 3951  c0 4333   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  1c1 11156   · cmul 11160   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  cexp 14102  chash 14369  cdvds 16290   gcd cgcd 16531  cprime 16708   pCnt cpc 16874  Basecbs 17247  Grpcgrp 18951  odcod 19542  Abelcabl 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-abl 19801
This theorem is referenced by:  ablfac1a  20089  ablfac1b  20090
  Copyright terms: Public domain W3C validator