MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   GIF version

Theorem ablfac1lem 20112
Description: Lemma for ablfac1b 20114. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1.m 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
ablfac1.n 𝑁 = ((♯‘𝐵) / 𝑀)
Assertion
Ref Expression
ablfac1lem ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)   𝑀(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
2 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
32sselda 4008 . . . . . 6 ((𝜑𝑃𝐴) → 𝑃 ∈ ℙ)
4 prmnn 16721 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℕ)
6 ablfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19827 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac1.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
98grpbn0 19006 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
11 ablfac1.f . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
12 hashnncl 14415 . . . . . . . . 9 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 257 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1514adantr 480 . . . . . 6 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℕ)
163, 15pccld 16897 . . . . 5 ((𝜑𝑃𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
175, 16nnexpcld 14294 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
181, 17eqeltrid 2848 . . 3 ((𝜑𝑃𝐴) → 𝑀 ∈ ℕ)
19 ablfac1.n . . . 4 𝑁 = ((♯‘𝐵) / 𝑀)
20 pcdvds 16911 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
213, 15, 20syl2anc 583 . . . . . 6 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
221, 21eqbrtrid 5201 . . . . 5 ((𝜑𝑃𝐴) → 𝑀 ∥ (♯‘𝐵))
23 nndivdvds 16311 . . . . . 6 (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2415, 18, 23syl2anc 583 . . . . 5 ((𝜑𝑃𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2522, 24mpbid 232 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ)
2619, 25eqeltrid 2848 . . 3 ((𝜑𝑃𝐴) → 𝑁 ∈ ℕ)
2718, 26jca 511 . 2 ((𝜑𝑃𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
281oveq1i 7458 . . 3 (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁)
29 pcndvds2 16915 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
303, 15, 29syl2anc 583 . . . . . 6 ((𝜑𝑃𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
311oveq2i 7459 . . . . . . . 8 ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3219, 31eqtri 2768 . . . . . . 7 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3332breq2i 5174 . . . . . 6 (𝑃𝑁𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3430, 33sylnibr 329 . . . . 5 ((𝜑𝑃𝐴) → ¬ 𝑃𝑁)
3526nnzd 12666 . . . . . 6 ((𝜑𝑃𝐴) → 𝑁 ∈ ℤ)
36 coprm 16758 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
373, 35, 36syl2anc 583 . . . . 5 ((𝜑𝑃𝐴) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
3834, 37mpbid 232 . . . 4 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
39 prmz 16722 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
403, 39syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
41 rpexp1i 16770 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4240, 35, 16, 41syl3anc 1371 . . . 4 ((𝜑𝑃𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4338, 42mpd 15 . . 3 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)
4428, 43eqtrid 2792 . 2 ((𝜑𝑃𝐴) → (𝑀 gcd 𝑁) = 1)
4519oveq2i 7459 . . 3 (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀))
4615nncnd 12309 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℂ)
4718nncnd 12309 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ∈ ℂ)
4818nnne0d 12343 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ≠ 0)
4946, 47, 48divcan2d 12072 . . 3 ((𝜑𝑃𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵))
5045, 49eqtr2id 2793 . 2 ((𝜑𝑃𝐴) → (♯‘𝐵) = (𝑀 · 𝑁))
5127, 44, 503jca 1128 1 ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  {crab 3443  wss 3976  c0 4352   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185   · cmul 11189   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  cexp 14112  chash 14379  cdvds 16302   gcd cgcd 16540  cprime 16718   pCnt cpc 16883  Basecbs 17258  Grpcgrp 18973  odcod 19566  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-abl 19825
This theorem is referenced by:  ablfac1a  20113  ablfac1b  20114
  Copyright terms: Public domain W3C validator