MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   GIF version

Theorem ablfac1lem 19190
Description: Lemma for ablfac1b 19192. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1.m 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
ablfac1.n 𝑁 = ((♯‘𝐵) / 𝑀)
Assertion
Ref Expression
ablfac1lem ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)   𝑀(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
2 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
32sselda 3967 . . . . . 6 ((𝜑𝑃𝐴) → 𝑃 ∈ ℙ)
4 prmnn 16018 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℕ)
6 ablfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 18911 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac1.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
98grpbn0 18132 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
11 ablfac1.f . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
12 hashnncl 13728 . . . . . . . . 9 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 259 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1514adantr 483 . . . . . 6 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℕ)
163, 15pccld 16187 . . . . 5 ((𝜑𝑃𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
175, 16nnexpcld 13607 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
181, 17eqeltrid 2917 . . 3 ((𝜑𝑃𝐴) → 𝑀 ∈ ℕ)
19 ablfac1.n . . . 4 𝑁 = ((♯‘𝐵) / 𝑀)
20 pcdvds 16200 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
213, 15, 20syl2anc 586 . . . . . 6 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
221, 21eqbrtrid 5101 . . . . 5 ((𝜑𝑃𝐴) → 𝑀 ∥ (♯‘𝐵))
23 nndivdvds 15616 . . . . . 6 (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2415, 18, 23syl2anc 586 . . . . 5 ((𝜑𝑃𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2522, 24mpbid 234 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ)
2619, 25eqeltrid 2917 . . 3 ((𝜑𝑃𝐴) → 𝑁 ∈ ℕ)
2718, 26jca 514 . 2 ((𝜑𝑃𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
281oveq1i 7166 . . 3 (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁)
29 pcndvds2 16204 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
303, 15, 29syl2anc 586 . . . . . 6 ((𝜑𝑃𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
311oveq2i 7167 . . . . . . . 8 ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3219, 31eqtri 2844 . . . . . . 7 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3332breq2i 5074 . . . . . 6 (𝑃𝑁𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3430, 33sylnibr 331 . . . . 5 ((𝜑𝑃𝐴) → ¬ 𝑃𝑁)
3526nnzd 12087 . . . . . 6 ((𝜑𝑃𝐴) → 𝑁 ∈ ℤ)
36 coprm 16055 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
373, 35, 36syl2anc 586 . . . . 5 ((𝜑𝑃𝐴) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
3834, 37mpbid 234 . . . 4 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
39 prmz 16019 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
403, 39syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
41 rpexp1i 16065 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4240, 35, 16, 41syl3anc 1367 . . . 4 ((𝜑𝑃𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4338, 42mpd 15 . . 3 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)
4428, 43syl5eq 2868 . 2 ((𝜑𝑃𝐴) → (𝑀 gcd 𝑁) = 1)
4519oveq2i 7167 . . 3 (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀))
4615nncnd 11654 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℂ)
4718nncnd 11654 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ∈ ℂ)
4818nnne0d 11688 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ≠ 0)
4946, 47, 48divcan2d 11418 . . 3 ((𝜑𝑃𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵))
5045, 49syl5req 2869 . 2 ((𝜑𝑃𝐴) → (♯‘𝐵) = (𝑀 · 𝑁))
5127, 44, 503jca 1124 1 ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {crab 3142  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  Fincfn 8509  1c1 10538   · cmul 10542   / cdiv 11297  cn 11638  0cn0 11898  cz 11982  cexp 13430  chash 13691  cdvds 15607   gcd cgcd 15843  cprime 16015   pCnt cpc 16173  Basecbs 16483  Grpcgrp 18103  odcod 18652  Abelcabl 18907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-fz 12894  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-abl 18909
This theorem is referenced by:  ablfac1a  19191  ablfac1b  19192
  Copyright terms: Public domain W3C validator