![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablfac1lem | Structured version Visualization version GIF version |
Description: Lemma for ablfac1b 20114. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
ablfac1.m | ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) |
ablfac1.n | ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) |
Ref | Expression |
---|---|
ablfac1lem | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablfac1.m | . . . 4 ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
2 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
3 | 2 | sselda 4008 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℙ) |
4 | prmnn 16721 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℕ) |
6 | ablfac1.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
7 | ablgrp 19827 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
8 | ablfac1.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
9 | 8 | grpbn0 19006 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
10 | 6, 7, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
11 | ablfac1.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
12 | hashnncl 14415 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
14 | 10, 13 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℕ) |
16 | 3, 15 | pccld 16897 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) |
17 | 5, 16 | nnexpcld 14294 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
18 | 1, 17 | eqeltrid 2848 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℕ) |
19 | ablfac1.n | . . . 4 ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) | |
20 | pcdvds 16911 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) | |
21 | 3, 15, 20 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
22 | 1, 21 | eqbrtrid 5201 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∥ (♯‘𝐵)) |
23 | nndivdvds 16311 | . . . . . 6 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) | |
24 | 15, 18, 23 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) |
25 | 22, 24 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ) |
26 | 19, 25 | eqeltrid 2848 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℕ) |
27 | 18, 26 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
28 | 1 | oveq1i 7458 | . . 3 ⊢ (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) |
29 | pcndvds2 16915 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) | |
30 | 3, 15, 29 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
31 | 1 | oveq2i 7459 | . . . . . . . 8 ⊢ ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
32 | 19, 31 | eqtri 2768 | . . . . . . 7 ⊢ 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
33 | 32 | breq2i 5174 | . . . . . 6 ⊢ (𝑃 ∥ 𝑁 ↔ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
34 | 30, 33 | sylnibr 329 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ 𝑁) |
35 | 26 | nnzd 12666 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℤ) |
36 | coprm 16758 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | |
37 | 3, 35, 36 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |
38 | 34, 37 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 gcd 𝑁) = 1) |
39 | prmz 16722 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
40 | 3, 39 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℤ) |
41 | rpexp1i 16770 | . . . . 5 ⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) | |
42 | 40, 35, 16, 41 | syl3anc 1371 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) |
43 | 38, 42 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1) |
44 | 28, 43 | eqtrid 2792 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 gcd 𝑁) = 1) |
45 | 19 | oveq2i 7459 | . . 3 ⊢ (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀)) |
46 | 15 | nncnd 12309 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℂ) |
47 | 18 | nncnd 12309 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℂ) |
48 | 18 | nnne0d 12343 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ≠ 0) |
49 | 46, 47, 48 | divcan2d 12072 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵)) |
50 | 45, 49 | eqtr2id 2793 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = (𝑀 · 𝑁)) |
51 | 27, 44, 50 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 1c1 11185 · cmul 11189 / cdiv 11947 ℕcn 12293 ℕ0cn0 12553 ℤcz 12639 ↑cexp 14112 ♯chash 14379 ∥ cdvds 16302 gcd cgcd 16540 ℙcprime 16718 pCnt cpc 16883 Basecbs 17258 Grpcgrp 18973 odcod 19566 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 df-pc 16884 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-abl 19825 |
This theorem is referenced by: ablfac1a 20113 ablfac1b 20114 |
Copyright terms: Public domain | W3C validator |