Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablfac1lem | Structured version Visualization version GIF version |
Description: Lemma for ablfac1b 19588. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
Ref | Expression |
---|---|
ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
ablfac1.m | ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) |
ablfac1.n | ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) |
Ref | Expression |
---|---|
ablfac1lem | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablfac1.m | . . . 4 ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
2 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
3 | 2 | sselda 3917 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℙ) |
4 | prmnn 16307 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℕ) |
6 | ablfac1.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
7 | ablgrp 19306 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
8 | ablfac1.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
9 | 8 | grpbn0 18523 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
10 | 6, 7, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
11 | ablfac1.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
12 | hashnncl 14009 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
14 | 10, 13 | mpbird 256 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℕ) |
16 | 3, 15 | pccld 16479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) |
17 | 5, 16 | nnexpcld 13888 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
18 | 1, 17 | eqeltrid 2843 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℕ) |
19 | ablfac1.n | . . . 4 ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) | |
20 | pcdvds 16493 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) | |
21 | 3, 15, 20 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
22 | 1, 21 | eqbrtrid 5105 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∥ (♯‘𝐵)) |
23 | nndivdvds 15900 | . . . . . 6 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) | |
24 | 15, 18, 23 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) |
25 | 22, 24 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ) |
26 | 19, 25 | eqeltrid 2843 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℕ) |
27 | 18, 26 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
28 | 1 | oveq1i 7265 | . . 3 ⊢ (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) |
29 | pcndvds2 16497 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) | |
30 | 3, 15, 29 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
31 | 1 | oveq2i 7266 | . . . . . . . 8 ⊢ ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
32 | 19, 31 | eqtri 2766 | . . . . . . 7 ⊢ 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
33 | 32 | breq2i 5078 | . . . . . 6 ⊢ (𝑃 ∥ 𝑁 ↔ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
34 | 30, 33 | sylnibr 328 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ 𝑁) |
35 | 26 | nnzd 12354 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℤ) |
36 | coprm 16344 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | |
37 | 3, 35, 36 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |
38 | 34, 37 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 gcd 𝑁) = 1) |
39 | prmz 16308 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
40 | 3, 39 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℤ) |
41 | rpexp1i 16356 | . . . . 5 ⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) | |
42 | 40, 35, 16, 41 | syl3anc 1369 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) |
43 | 38, 42 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1) |
44 | 28, 43 | eqtrid 2790 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 gcd 𝑁) = 1) |
45 | 19 | oveq2i 7266 | . . 3 ⊢ (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀)) |
46 | 15 | nncnd 11919 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℂ) |
47 | 18 | nncnd 11919 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℂ) |
48 | 18 | nnne0d 11953 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ≠ 0) |
49 | 46, 47, 48 | divcan2d 11683 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵)) |
50 | 45, 49 | eqtr2id 2792 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = (𝑀 · 𝑁)) |
51 | 27, 44, 50 | 3jca 1126 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 1c1 10803 · cmul 10807 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ↑cexp 13710 ♯chash 13972 ∥ cdvds 15891 gcd cgcd 16129 ℙcprime 16304 pCnt cpc 16465 Basecbs 16840 Grpcgrp 18492 odcod 19047 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-abl 19304 |
This theorem is referenced by: ablfac1a 19587 ablfac1b 19588 |
Copyright terms: Public domain | W3C validator |