MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1lem Structured version   Visualization version   GIF version

Theorem ablfac1lem 19967
Description: Lemma for ablfac1b 19969. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1.m 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
ablfac1.n 𝑁 = ((♯‘𝐵) / 𝑀)
Assertion
Ref Expression
ablfac1lem ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑝,𝐵   𝜑,𝑝,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝑃,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝑆(𝑥,𝑝)   𝑀(𝑥,𝑝)   𝑁(𝑥,𝑝)

Proof of Theorem ablfac1lem
StepHypRef Expression
1 ablfac1.m . . . 4 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵)))
2 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
32sselda 3937 . . . . . 6 ((𝜑𝑃𝐴) → 𝑃 ∈ ℙ)
4 prmnn 16603 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
53, 4syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℕ)
6 ablfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19682 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
8 ablfac1.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
98grpbn0 18863 . . . . . . . . 9 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
106, 7, 93syl 18 . . . . . . . 8 (𝜑𝐵 ≠ ∅)
11 ablfac1.f . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
12 hashnncl 14291 . . . . . . . . 9 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1311, 12syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
1410, 13mpbird 257 . . . . . . 7 (𝜑 → (♯‘𝐵) ∈ ℕ)
1514adantr 480 . . . . . 6 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℕ)
163, 15pccld 16780 . . . . 5 ((𝜑𝑃𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
175, 16nnexpcld 14170 . . . 4 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ)
181, 17eqeltrid 2832 . . 3 ((𝜑𝑃𝐴) → 𝑀 ∈ ℕ)
19 ablfac1.n . . . 4 𝑁 = ((♯‘𝐵) / 𝑀)
20 pcdvds 16794 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
213, 15, 20syl2anc 584 . . . . . 6 ((𝜑𝑃𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵))
221, 21eqbrtrid 5130 . . . . 5 ((𝜑𝑃𝐴) → 𝑀 ∥ (♯‘𝐵))
23 nndivdvds 16190 . . . . . 6 (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2415, 18, 23syl2anc 584 . . . . 5 ((𝜑𝑃𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ))
2522, 24mpbid 232 . . . 4 ((𝜑𝑃𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ)
2619, 25eqeltrid 2832 . . 3 ((𝜑𝑃𝐴) → 𝑁 ∈ ℕ)
2718, 26jca 511 . 2 ((𝜑𝑃𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))
281oveq1i 7363 . . 3 (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁)
29 pcndvds2 16798 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
303, 15, 29syl2anc 584 . . . . . 6 ((𝜑𝑃𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
311oveq2i 7364 . . . . . . . 8 ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3219, 31eqtri 2752 . . . . . . 7 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3332breq2i 5103 . . . . . 6 (𝑃𝑁𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3430, 33sylnibr 329 . . . . 5 ((𝜑𝑃𝐴) → ¬ 𝑃𝑁)
3526nnzd 12516 . . . . . 6 ((𝜑𝑃𝐴) → 𝑁 ∈ ℤ)
36 coprm 16640 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
373, 35, 36syl2anc 584 . . . . 5 ((𝜑𝑃𝐴) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
3834, 37mpbid 232 . . . 4 ((𝜑𝑃𝐴) → (𝑃 gcd 𝑁) = 1)
39 prmz 16604 . . . . . 6 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
403, 39syl 17 . . . . 5 ((𝜑𝑃𝐴) → 𝑃 ∈ ℤ)
41 rpexp1i 16652 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4240, 35, 16, 41syl3anc 1373 . . . 4 ((𝜑𝑃𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1))
4338, 42mpd 15 . . 3 ((𝜑𝑃𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)
4428, 43eqtrid 2776 . 2 ((𝜑𝑃𝐴) → (𝑀 gcd 𝑁) = 1)
4519oveq2i 7364 . . 3 (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀))
4615nncnd 12162 . . . 4 ((𝜑𝑃𝐴) → (♯‘𝐵) ∈ ℂ)
4718nncnd 12162 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ∈ ℂ)
4818nnne0d 12196 . . . 4 ((𝜑𝑃𝐴) → 𝑀 ≠ 0)
4946, 47, 48divcan2d 11920 . . 3 ((𝜑𝑃𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵))
5045, 49eqtr2id 2777 . 2 ((𝜑𝑃𝐴) → (♯‘𝐵) = (𝑀 · 𝑁))
5127, 44, 503jca 1128 1 ((𝜑𝑃𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  {crab 3396  wss 3905  c0 4286   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  Fincfn 8879  1c1 11029   · cmul 11033   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  cexp 13986  chash 14255  cdvds 16181   gcd cgcd 16423  cprime 16600   pCnt cpc 16766  Basecbs 17138  Grpcgrp 18830  odcod 19421  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-abl 19680
This theorem is referenced by:  ablfac1a  19968  ablfac1b  19969
  Copyright terms: Public domain W3C validator