| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablfac1lem | Structured version Visualization version GIF version | ||
| Description: Lemma for ablfac1b 19985. Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016.) |
| Ref | Expression |
|---|---|
| ablfac1.b | ⊢ 𝐵 = (Base‘𝐺) |
| ablfac1.o | ⊢ 𝑂 = (od‘𝐺) |
| ablfac1.s | ⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
| ablfac1.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
| ablfac1.f | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| ablfac1.1 | ⊢ (𝜑 → 𝐴 ⊆ ℙ) |
| ablfac1.m | ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) |
| ablfac1.n | ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) |
| Ref | Expression |
|---|---|
| ablfac1lem | ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablfac1.m | . . . 4 ⊢ 𝑀 = (𝑃↑(𝑃 pCnt (♯‘𝐵))) | |
| 2 | ablfac1.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ ℙ) | |
| 3 | 2 | sselda 3934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℙ) |
| 4 | prmnn 16585 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℕ) |
| 6 | ablfac1.g | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
| 7 | ablgrp 19698 | . . . . . . . . 9 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) | |
| 8 | ablfac1.b | . . . . . . . . . 10 ⊢ 𝐵 = (Base‘𝐺) | |
| 9 | 8 | grpbn0 18879 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 10 | 6, 7, 9 | 3syl 18 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
| 11 | ablfac1.f | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 12 | hashnncl 14273 | . . . . . . . . 9 ⊢ (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) | |
| 13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
| 14 | 10, 13 | mpbird 257 | . . . . . . 7 ⊢ (𝜑 → (♯‘𝐵) ∈ ℕ) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℕ) |
| 16 | 3, 15 | pccld 16762 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) |
| 17 | 5, 16 | nnexpcld 14152 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∈ ℕ) |
| 18 | 1, 17 | eqeltrid 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℕ) |
| 19 | ablfac1.n | . . . 4 ⊢ 𝑁 = ((♯‘𝐵) / 𝑀) | |
| 20 | pcdvds 16776 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) | |
| 21 | 3, 15, 20 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃↑(𝑃 pCnt (♯‘𝐵))) ∥ (♯‘𝐵)) |
| 22 | 1, 21 | eqbrtrid 5126 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∥ (♯‘𝐵)) |
| 23 | nndivdvds 16172 | . . . . . 6 ⊢ (((♯‘𝐵) ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) | |
| 24 | 15, 18, 23 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝑀) ∈ ℕ)) |
| 25 | 22, 24 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((♯‘𝐵) / 𝑀) ∈ ℕ) |
| 26 | 19, 25 | eqeltrid 2835 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℕ) |
| 27 | 18, 26 | jca 511 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) |
| 28 | 1 | oveq1i 7356 | . . 3 ⊢ (𝑀 gcd 𝑁) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) |
| 29 | pcndvds2 16780 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) | |
| 30 | 3, 15, 29 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 31 | 1 | oveq2i 7357 | . . . . . . . 8 ⊢ ((♯‘𝐵) / 𝑀) = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 32 | 19, 31 | eqtri 2754 | . . . . . . 7 ⊢ 𝑁 = ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 33 | 32 | breq2i 5099 | . . . . . 6 ⊢ (𝑃 ∥ 𝑁 ↔ 𝑃 ∥ ((♯‘𝐵) / (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 34 | 30, 33 | sylnibr 329 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ∥ 𝑁) |
| 35 | 26 | nnzd 12495 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑁 ∈ ℤ) |
| 36 | coprm 16622 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) | |
| 37 | 3, 35, 36 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |
| 38 | 34, 37 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑃 gcd 𝑁) = 1) |
| 39 | prmz 16586 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 40 | 3, 39 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ ℤ) |
| 41 | rpexp1i 16634 | . . . . 5 ⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) | |
| 42 | 40, 35, 16, 41 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃 gcd 𝑁) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1)) |
| 43 | 38, 42 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd 𝑁) = 1) |
| 44 | 28, 43 | eqtrid 2778 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 gcd 𝑁) = 1) |
| 45 | 19 | oveq2i 7357 | . . 3 ⊢ (𝑀 · 𝑁) = (𝑀 · ((♯‘𝐵) / 𝑀)) |
| 46 | 15 | nncnd 12141 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) ∈ ℂ) |
| 47 | 18 | nncnd 12141 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ∈ ℂ) |
| 48 | 18 | nnne0d 12175 | . . . 4 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → 𝑀 ≠ 0) |
| 49 | 46, 47, 48 | divcan2d 11899 | . . 3 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (𝑀 · ((♯‘𝐵) / 𝑀)) = (♯‘𝐵)) |
| 50 | 45, 49 | eqtr2id 2779 | . 2 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → (♯‘𝐵) = (𝑀 · 𝑁)) |
| 51 | 27, 44, 50 | 3jca 1128 | 1 ⊢ ((𝜑 ∧ 𝑃 ∈ 𝐴) → ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝑀 gcd 𝑁) = 1 ∧ (♯‘𝐵) = (𝑀 · 𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 ↦ cmpt 5172 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 1c1 11007 · cmul 11011 / cdiv 11774 ℕcn 12125 ℕ0cn0 12381 ℤcz 12468 ↑cexp 13968 ♯chash 14237 ∥ cdvds 16163 gcd cgcd 16405 ℙcprime 16582 pCnt cpc 16748 Basecbs 17120 Grpcgrp 18846 odcod 19437 Abelcabl 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-prm 16583 df-pc 16749 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-abl 19696 |
| This theorem is referenced by: ablfac1a 19984 ablfac1b 19985 |
| Copyright terms: Public domain | W3C validator |