MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1c Structured version   Visualization version   GIF version

Theorem ablfac1c 20010
Description: The factors of ablfac1b 20009 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
ablfac1c (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Distinct variable groups:   𝑤,𝑝,𝑥,𝐵   𝐷,𝑝,𝑥   𝜑,𝑝,𝑤,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1c
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ablfac1.f . 2 (𝜑𝐵 ∈ Fin)
2 ablfac1.b . . . 4 𝐵 = (Base‘𝐺)
32dprdssv 19955 . . 3 (𝐺 DProd 𝑆) ⊆ 𝐵
43a1i 11 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝐵)
5 ssfi 9143 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵) → (𝐺 DProd 𝑆) ∈ Fin)
61, 3, 5sylancl 586 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ Fin)
7 hashcl 14328 . . . . 5 ((𝐺 DProd 𝑆) ∈ Fin → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
86, 7syl 17 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
9 hashcl 14328 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
101, 9syl 17 . . . 4 (𝜑 → (♯‘𝐵) ∈ ℕ0)
11 ablfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
12 ablfac1.s . . . . . . 7 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
13 ablfac1.g . . . . . . 7 (𝜑𝐺 ∈ Abel)
14 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
152, 11, 12, 13, 1, 14ablfac1b 20009 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
16 dprdsubg 19963 . . . . . 6 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
1715, 16syl 17 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
182lagsubg 19134 . . . . 5 (((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
1917, 1, 18syl2anc 584 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
20 breq1 5113 . . . . . . . . . . 11 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
21 ablfac1c.d . . . . . . . . . . 11 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
2220, 21elrab2 3665 . . . . . . . . . 10 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
23 ablfac1.2 . . . . . . . . . . 11 (𝜑𝐷𝐴)
2423sseld 3948 . . . . . . . . . 10 (𝜑 → (𝑞𝐷𝑞𝐴))
2522, 24biimtrrid 243 . . . . . . . . 9 (𝜑 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴))
2625impl 455 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴)
272, 11, 12, 13, 1, 14ablfac1a 20008 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
282fvexi 6875 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
2928rabex 5297 . . . . . . . . . . . . . . . . . 18 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
3029, 12dmmpti 6665 . . . . . . . . . . . . . . . . 17 dom 𝑆 = 𝐴
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 = 𝐴)
3215, 31dprdf2 19946 . . . . . . . . . . . . . . 15 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3332ffvelcdmda 7059 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
3415adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑆)
3530a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑆 = 𝐴)
36 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑞𝐴)
3734, 35, 36dprdub 19964 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))
3817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
39 eqid 2730 . . . . . . . . . . . . . . . 16 (𝐺s (𝐺 DProd 𝑆)) = (𝐺s (𝐺 DProd 𝑆))
4039subsubg 19088 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4138, 40syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4233, 37, 41mpbir2and 713 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))))
4339subgbas 19069 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
4438, 43syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
456adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ Fin)
4644, 45eqeltrrd 2830 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin)
47 eqid 2730 . . . . . . . . . . . . . 14 (Base‘(𝐺s (𝐺 DProd 𝑆))) = (Base‘(𝐺s (𝐺 DProd 𝑆)))
4847lagsubg 19134 . . . . . . . . . . . . 13 (((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ∧ (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
4942, 46, 48syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5044fveq2d 6865 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) = (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5149, 50breqtrrd 5138 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(𝐺 DProd 𝑆)))
5227, 51eqbrtrrd 5134 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))
5314sselda 3949 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
548nn0zd 12562 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
5554adantr 480 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
56 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
57 ablgrp 19722 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
582grpbn0 18905 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
5913, 57, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ∅)
60 hashnncl 14338 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
611, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
6259, 61mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐵) ∈ ℕ)
6362adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → (♯‘𝐵) ∈ ℕ)
6456, 63pccld 16828 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
6553, 64syldan 591 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
66 pcdvdsb 16847 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6753, 55, 65, 66syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6852, 67mpbird 257 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
6968adantlr 715 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
7026, 69syldan 591 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
71 pceq0 16849 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7256, 63, 71syl2anc 584 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7372biimpar 477 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) = 0)
74 eqid 2730 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
7574subg0cl 19073 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd 𝑆))
76 ne0i 4307 . . . . . . . . . . . . . 14 ((0g𝐺) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅)
7717, 75, 763syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 DProd 𝑆) ≠ ∅)
78 hashnncl 14338 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ Fin → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
796, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
8077, 79mpbird 257 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8180adantr 480 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ℙ) → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8256, 81pccld 16828 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ∈ ℕ0)
8382nn0ge0d 12513 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8483adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8573, 84eqbrtrd 5132 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8670, 85pm2.61dan 812 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8786ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8810nn0zd 12562 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
89 pc2dvds 16857 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9088, 54, 89syl2anc 584 . . . . 5 (𝜑 → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9187, 90mpbird 257 . . . 4 (𝜑 → (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))
92 dvdseq 16291 . . . 4 ((((♯‘(𝐺 DProd 𝑆)) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵) ∧ (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))) → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
938, 10, 19, 91, 92syl22anc 838 . . 3 (𝜑 → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
94 hashen 14319 . . . 4 (((𝐺 DProd 𝑆) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
956, 1, 94syl2anc 584 . . 3 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
9693, 95mpbid 232 . 2 (𝜑 → (𝐺 DProd 𝑆) ≈ 𝐵)
97 fisseneq 9211 . 2 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵 ∧ (𝐺 DProd 𝑆) ≈ 𝐵) → (𝐺 DProd 𝑆) = 𝐵)
981, 4, 96, 97syl3anc 1373 1 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  dom cdm 5641  cfv 6514  (class class class)co 7390  cen 8918  Fincfn 8921  0cc0 11075  cle 11216  cn 12193  0cn0 12449  cz 12536  cexp 14033  chash 14302  cdvds 16229  cprime 16648   pCnt cpc 16814  Basecbs 17186  s cress 17207  0gc0g 17409  Grpcgrp 18872  SubGrpcsubg 19059  odcod 19461  Abelcabl 19718   DProd cdprd 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-ghm 19152  df-gim 19198  df-ga 19229  df-cntz 19256  df-oppg 19285  df-od 19465  df-lsm 19573  df-pj1 19574  df-cmn 19719  df-abl 19720  df-dprd 19934
This theorem is referenced by:  ablfaclem2  20025
  Copyright terms: Public domain W3C validator