Step | Hyp | Ref
| Expression |
1 | | ablfac1.f |
. 2
⊢ (𝜑 → 𝐵 ∈ Fin) |
2 | | ablfac1.b |
. . . 4
⊢ 𝐵 = (Base‘𝐺) |
3 | 2 | dprdssv 19534 |
. . 3
⊢ (𝐺 DProd 𝑆) ⊆ 𝐵 |
4 | 3 | a1i 11 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝐵) |
5 | | ssfi 8918 |
. . . . . 6
⊢ ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵) → (𝐺 DProd 𝑆) ∈ Fin) |
6 | 1, 3, 5 | sylancl 585 |
. . . . 5
⊢ (𝜑 → (𝐺 DProd 𝑆) ∈ Fin) |
7 | | hashcl 13999 |
. . . . 5
⊢ ((𝐺 DProd 𝑆) ∈ Fin → (♯‘(𝐺 DProd 𝑆)) ∈
ℕ0) |
8 | 6, 7 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈
ℕ0) |
9 | | hashcl 13999 |
. . . . 5
⊢ (𝐵 ∈ Fin →
(♯‘𝐵) ∈
ℕ0) |
10 | 1, 9 | syl 17 |
. . . 4
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ0) |
11 | | ablfac1.o |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
12 | | ablfac1.s |
. . . . . . 7
⊢ 𝑆 = (𝑝 ∈ 𝐴 ↦ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))}) |
13 | | ablfac1.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Abel) |
14 | | ablfac1.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ℙ) |
15 | 2, 11, 12, 13, 1, 14 | ablfac1b 19588 |
. . . . . 6
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
16 | | dprdsubg 19542 |
. . . . . 6
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
17 | 15, 16 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
18 | 2 | lagsubg 18733 |
. . . . 5
⊢ (((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵)) |
19 | 17, 1, 18 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵)) |
20 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵))) |
21 | | ablfac1c.d |
. . . . . . . . . . 11
⊢ 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)} |
22 | 20, 21 | elrab2 3620 |
. . . . . . . . . 10
⊢ (𝑞 ∈ 𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵))) |
23 | | ablfac1.2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
24 | 23 | sseld 3916 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑞 ∈ 𝐷 → 𝑞 ∈ 𝐴)) |
25 | 22, 24 | syl5bir 242 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞 ∈ 𝐴)) |
26 | 25 | impl 455 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞 ∈ 𝐴) |
27 | 2, 11, 12, 13, 1, 14 | ablfac1a 19587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑆‘𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵)))) |
28 | 2 | fvexi 6770 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐵 ∈ V |
29 | 28 | rabex 5251 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V |
30 | 29, 12 | dmmpti 6561 |
. . . . . . . . . . . . . . . . 17
⊢ dom 𝑆 = 𝐴 |
31 | 30 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝑆 = 𝐴) |
32 | 15, 31 | dprdf2 19525 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆:𝐴⟶(SubGrp‘𝐺)) |
33 | 32 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) ∈ (SubGrp‘𝐺)) |
34 | 15 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝐺dom DProd 𝑆) |
35 | 30 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → dom 𝑆 = 𝐴) |
36 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) |
37 | 34, 35, 36 | dprdub 19543 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) ⊆ (𝐺 DProd 𝑆)) |
38 | 17 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺)) |
39 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ↾s (𝐺 DProd 𝑆)) = (𝐺 ↾s (𝐺 DProd 𝑆)) |
40 | 39 | subsubg 18693 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → ((𝑆‘𝑞) ∈ (SubGrp‘(𝐺 ↾s (𝐺 DProd 𝑆))) ↔ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆‘𝑞) ⊆ (𝐺 DProd 𝑆)))) |
41 | 38, 40 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑆‘𝑞) ∈ (SubGrp‘(𝐺 ↾s (𝐺 DProd 𝑆))) ↔ ((𝑆‘𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆‘𝑞) ⊆ (𝐺 DProd 𝑆)))) |
42 | 33, 37, 41 | mpbir2and 709 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑆‘𝑞) ∈ (SubGrp‘(𝐺 ↾s (𝐺 DProd 𝑆)))) |
43 | 39 | subgbas 18674 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (𝐺 DProd 𝑆) = (Base‘(𝐺 ↾s (𝐺 DProd 𝑆)))) |
44 | 38, 43 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝐺 DProd 𝑆) = (Base‘(𝐺 ↾s (𝐺 DProd 𝑆)))) |
45 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝐺 DProd 𝑆) ∈ Fin) |
46 | 44, 45 | eqeltrrd 2840 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (Base‘(𝐺 ↾s (𝐺 DProd 𝑆))) ∈ Fin) |
47 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘(𝐺
↾s (𝐺
DProd 𝑆))) =
(Base‘(𝐺
↾s (𝐺
DProd 𝑆))) |
48 | 47 | lagsubg 18733 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘𝑞) ∈ (SubGrp‘(𝐺 ↾s (𝐺 DProd 𝑆))) ∧ (Base‘(𝐺 ↾s (𝐺 DProd 𝑆))) ∈ Fin) → (♯‘(𝑆‘𝑞)) ∥ (♯‘(Base‘(𝐺 ↾s (𝐺 DProd 𝑆))))) |
49 | 42, 46, 48 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑆‘𝑞)) ∥ (♯‘(Base‘(𝐺 ↾s (𝐺 DProd 𝑆))))) |
50 | 44 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝐺 DProd 𝑆)) = (♯‘(Base‘(𝐺 ↾s (𝐺 DProd 𝑆))))) |
51 | 49, 50 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝑆‘𝑞)) ∥ (♯‘(𝐺 DProd 𝑆))) |
52 | 27, 51 | eqbrtrrd 5094 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))) |
53 | 14 | sselda 3917 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ ℙ) |
54 | 8 | nn0zd 12353 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) |
55 | 54 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) |
56 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 𝑞 ∈ ℙ) |
57 | | ablgrp 19306 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
58 | 2 | grpbn0 18523 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
59 | 13, 57, 58 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐵 ≠ ∅) |
60 | | hashnncl 14009 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
61 | 1, 60 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
62 | 59, 61 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
63 | 62 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (♯‘𝐵) ∈
ℕ) |
64 | 56, 63 | pccld 16479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ∈
ℕ0) |
65 | 53, 64 | syldan 590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈
ℕ0) |
66 | | pcdvdsb 16498 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ ℙ ∧
(♯‘(𝐺 DProd
𝑆)) ∈ ℤ ∧
(𝑞 pCnt
(♯‘𝐵)) ∈
ℕ0) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))) |
67 | 53, 55, 65, 66 | syl3anc 1369 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))) |
68 | 52, 67 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
69 | 68 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∈ 𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
70 | 26, 69 | syldan 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
71 | | pceq0 16500 |
. . . . . . . . . 10
⊢ ((𝑞 ∈ ℙ ∧
(♯‘𝐵) ∈
ℕ) → ((𝑞 pCnt
(♯‘𝐵)) = 0
↔ ¬ 𝑞 ∥
(♯‘𝐵))) |
72 | 56, 63, 71 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵))) |
73 | 72 | biimpar 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) = 0) |
74 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐺) = (0g‘𝐺) |
75 | 74 | subg0cl 18678 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (0g‘𝐺) ∈ (𝐺 DProd 𝑆)) |
76 | | ne0i 4265 |
. . . . . . . . . . . . . 14
⊢
((0g‘𝐺) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅) |
77 | 17, 75, 76 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 DProd 𝑆) ≠ ∅) |
78 | | hashnncl 14009 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 DProd 𝑆) ∈ Fin → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅)) |
79 | 6, 78 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅)) |
80 | 77, 79 | mpbird 256 |
. . . . . . . . . . . 12
⊢ (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ) |
81 | 80 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ) |
82 | 56, 81 | pccld 16479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ∈
ℕ0) |
83 | 82 | nn0ge0d 12226 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
84 | 83 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
85 | 73, 84 | eqbrtrd 5092 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
86 | 70, 85 | pm2.61dan 809 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
87 | 86 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))) |
88 | 10 | nn0zd 12353 |
. . . . . 6
⊢ (𝜑 → (♯‘𝐵) ∈
ℤ) |
89 | | pc2dvds 16508 |
. . . . . 6
⊢
(((♯‘𝐵)
∈ ℤ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) →
((♯‘𝐵) ∥
(♯‘(𝐺 DProd
𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))) |
90 | 88, 54, 89 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))) |
91 | 87, 90 | mpbird 256 |
. . . 4
⊢ (𝜑 → (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆))) |
92 | | dvdseq 15951 |
. . . 4
⊢
((((♯‘(𝐺
DProd 𝑆)) ∈
ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) ∧
((♯‘(𝐺 DProd
𝑆)) ∥
(♯‘𝐵) ∧
(♯‘𝐵) ∥
(♯‘(𝐺 DProd
𝑆)))) →
(♯‘(𝐺 DProd
𝑆)) = (♯‘𝐵)) |
93 | 8, 10, 19, 91, 92 | syl22anc 835 |
. . 3
⊢ (𝜑 → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵)) |
94 | | hashen 13989 |
. . . 4
⊢ (((𝐺 DProd 𝑆) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵)) |
95 | 6, 1, 94 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵)) |
96 | 93, 95 | mpbid 231 |
. 2
⊢ (𝜑 → (𝐺 DProd 𝑆) ≈ 𝐵) |
97 | | fisseneq 8963 |
. 2
⊢ ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵 ∧ (𝐺 DProd 𝑆) ≈ 𝐵) → (𝐺 DProd 𝑆) = 𝐵) |
98 | 1, 4, 96, 97 | syl3anc 1369 |
1
⊢ (𝜑 → (𝐺 DProd 𝑆) = 𝐵) |