MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1c Structured version   Visualization version   GIF version

Theorem ablfac1c 19857
Description: The factors of ablfac1b 19856 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
ablfac1c (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Distinct variable groups:   𝑤,𝑝,𝑥,𝐵   𝐷,𝑝,𝑥   𝜑,𝑝,𝑤,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1c
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ablfac1.f . 2 (𝜑𝐵 ∈ Fin)
2 ablfac1.b . . . 4 𝐵 = (Base‘𝐺)
32dprdssv 19802 . . 3 (𝐺 DProd 𝑆) ⊆ 𝐵
43a1i 11 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝐵)
5 ssfi 9124 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵) → (𝐺 DProd 𝑆) ∈ Fin)
61, 3, 5sylancl 587 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ Fin)
7 hashcl 14263 . . . . 5 ((𝐺 DProd 𝑆) ∈ Fin → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
86, 7syl 17 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
9 hashcl 14263 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
101, 9syl 17 . . . 4 (𝜑 → (♯‘𝐵) ∈ ℕ0)
11 ablfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
12 ablfac1.s . . . . . . 7 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
13 ablfac1.g . . . . . . 7 (𝜑𝐺 ∈ Abel)
14 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
152, 11, 12, 13, 1, 14ablfac1b 19856 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
16 dprdsubg 19810 . . . . . 6 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
1715, 16syl 17 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
182lagsubg 18999 . . . . 5 (((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
1917, 1, 18syl2anc 585 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
20 breq1 5113 . . . . . . . . . . 11 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
21 ablfac1c.d . . . . . . . . . . 11 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
2220, 21elrab2 3653 . . . . . . . . . 10 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
23 ablfac1.2 . . . . . . . . . . 11 (𝜑𝐷𝐴)
2423sseld 3948 . . . . . . . . . 10 (𝜑 → (𝑞𝐷𝑞𝐴))
2522, 24biimtrrid 242 . . . . . . . . 9 (𝜑 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴))
2625impl 457 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴)
272, 11, 12, 13, 1, 14ablfac1a 19855 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
282fvexi 6861 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
2928rabex 5294 . . . . . . . . . . . . . . . . . 18 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
3029, 12dmmpti 6650 . . . . . . . . . . . . . . . . 17 dom 𝑆 = 𝐴
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 = 𝐴)
3215, 31dprdf2 19793 . . . . . . . . . . . . . . 15 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3332ffvelcdmda 7040 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
3415adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑆)
3530a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑆 = 𝐴)
36 simpr 486 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑞𝐴)
3734, 35, 36dprdub 19811 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))
3817adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
39 eqid 2737 . . . . . . . . . . . . . . . 16 (𝐺s (𝐺 DProd 𝑆)) = (𝐺s (𝐺 DProd 𝑆))
4039subsubg 18958 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4138, 40syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4233, 37, 41mpbir2and 712 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))))
4339subgbas 18939 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
4438, 43syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
456adantr 482 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ Fin)
4644, 45eqeltrrd 2839 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin)
47 eqid 2737 . . . . . . . . . . . . . 14 (Base‘(𝐺s (𝐺 DProd 𝑆))) = (Base‘(𝐺s (𝐺 DProd 𝑆)))
4847lagsubg 18999 . . . . . . . . . . . . 13 (((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ∧ (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
4942, 46, 48syl2anc 585 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5044fveq2d 6851 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) = (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5149, 50breqtrrd 5138 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(𝐺 DProd 𝑆)))
5227, 51eqbrtrrd 5134 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))
5314sselda 3949 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
548nn0zd 12532 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
5554adantr 482 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
56 simpr 486 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
57 ablgrp 19574 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
582grpbn0 18786 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
5913, 57, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ∅)
60 hashnncl 14273 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
611, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
6259, 61mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐵) ∈ ℕ)
6362adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → (♯‘𝐵) ∈ ℕ)
6456, 63pccld 16729 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
6553, 64syldan 592 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
66 pcdvdsb 16748 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6753, 55, 65, 66syl3anc 1372 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6852, 67mpbird 257 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
6968adantlr 714 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
7026, 69syldan 592 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
71 pceq0 16750 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7256, 63, 71syl2anc 585 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7372biimpar 479 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) = 0)
74 eqid 2737 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
7574subg0cl 18943 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd 𝑆))
76 ne0i 4299 . . . . . . . . . . . . . 14 ((0g𝐺) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅)
7717, 75, 763syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 DProd 𝑆) ≠ ∅)
78 hashnncl 14273 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ Fin → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
796, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
8077, 79mpbird 257 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8180adantr 482 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ℙ) → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8256, 81pccld 16729 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ∈ ℕ0)
8382nn0ge0d 12483 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8483adantr 482 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8573, 84eqbrtrd 5132 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8670, 85pm2.61dan 812 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8786ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8810nn0zd 12532 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
89 pc2dvds 16758 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9088, 54, 89syl2anc 585 . . . . 5 (𝜑 → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9187, 90mpbird 257 . . . 4 (𝜑 → (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))
92 dvdseq 16203 . . . 4 ((((♯‘(𝐺 DProd 𝑆)) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵) ∧ (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))) → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
938, 10, 19, 91, 92syl22anc 838 . . 3 (𝜑 → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
94 hashen 14254 . . . 4 (((𝐺 DProd 𝑆) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
956, 1, 94syl2anc 585 . . 3 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
9693, 95mpbid 231 . 2 (𝜑 → (𝐺 DProd 𝑆) ≈ 𝐵)
97 fisseneq 9208 . 2 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵 ∧ (𝐺 DProd 𝑆) ≈ 𝐵) → (𝐺 DProd 𝑆) = 𝐵)
981, 4, 96, 97syl3anc 1372 1 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2944  wral 3065  {crab 3410  wss 3915  c0 4287   class class class wbr 5110  cmpt 5193  dom cdm 5638  cfv 6501  (class class class)co 7362  cen 8887  Fincfn 8890  0cc0 11058  cle 11197  cn 12160  0cn0 12420  cz 12506  cexp 13974  chash 14237  cdvds 16143  cprime 16554   pCnt cpc 16715  Basecbs 17090  s cress 17119  0gc0g 17328  Grpcgrp 18755  SubGrpcsubg 18929  odcod 19313  Abelcabl 19570   DProd cdprd 19779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-oadd 8421  df-omul 8422  df-er 8655  df-ec 8657  df-qs 8661  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-acn 9885  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-sum 15578  df-dvds 16144  df-gcd 16382  df-prm 16555  df-pc 16716  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-0g 17330  df-gsum 17331  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-mhm 18608  df-submnd 18609  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mulg 18880  df-subg 18932  df-eqg 18934  df-ghm 19013  df-gim 19056  df-ga 19077  df-cntz 19104  df-oppg 19131  df-od 19317  df-lsm 19425  df-pj1 19426  df-cmn 19571  df-abl 19572  df-dprd 19781
This theorem is referenced by:  ablfaclem2  19872
  Copyright terms: Public domain W3C validator