MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1c Structured version   Visualization version   GIF version

Theorem ablfac1c 20106
Description: The factors of ablfac1b 20105 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
ablfac1c (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Distinct variable groups:   𝑤,𝑝,𝑥,𝐵   𝐷,𝑝,𝑥   𝜑,𝑝,𝑤,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1c
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ablfac1.f . 2 (𝜑𝐵 ∈ Fin)
2 ablfac1.b . . . 4 𝐵 = (Base‘𝐺)
32dprdssv 20051 . . 3 (𝐺 DProd 𝑆) ⊆ 𝐵
43a1i 11 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝐵)
5 ssfi 9212 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵) → (𝐺 DProd 𝑆) ∈ Fin)
61, 3, 5sylancl 586 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ Fin)
7 hashcl 14392 . . . . 5 ((𝐺 DProd 𝑆) ∈ Fin → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
86, 7syl 17 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
9 hashcl 14392 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
101, 9syl 17 . . . 4 (𝜑 → (♯‘𝐵) ∈ ℕ0)
11 ablfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
12 ablfac1.s . . . . . . 7 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
13 ablfac1.g . . . . . . 7 (𝜑𝐺 ∈ Abel)
14 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
152, 11, 12, 13, 1, 14ablfac1b 20105 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
16 dprdsubg 20059 . . . . . 6 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
1715, 16syl 17 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
182lagsubg 19226 . . . . 5 (((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
1917, 1, 18syl2anc 584 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
20 breq1 5151 . . . . . . . . . . 11 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
21 ablfac1c.d . . . . . . . . . . 11 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
2220, 21elrab2 3698 . . . . . . . . . 10 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
23 ablfac1.2 . . . . . . . . . . 11 (𝜑𝐷𝐴)
2423sseld 3994 . . . . . . . . . 10 (𝜑 → (𝑞𝐷𝑞𝐴))
2522, 24biimtrrid 243 . . . . . . . . 9 (𝜑 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴))
2625impl 455 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴)
272, 11, 12, 13, 1, 14ablfac1a 20104 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
282fvexi 6921 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
2928rabex 5345 . . . . . . . . . . . . . . . . . 18 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
3029, 12dmmpti 6713 . . . . . . . . . . . . . . . . 17 dom 𝑆 = 𝐴
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 = 𝐴)
3215, 31dprdf2 20042 . . . . . . . . . . . . . . 15 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3332ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
3415adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑆)
3530a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑆 = 𝐴)
36 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑞𝐴)
3734, 35, 36dprdub 20060 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))
3817adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
39 eqid 2735 . . . . . . . . . . . . . . . 16 (𝐺s (𝐺 DProd 𝑆)) = (𝐺s (𝐺 DProd 𝑆))
4039subsubg 19180 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4138, 40syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4233, 37, 41mpbir2and 713 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))))
4339subgbas 19161 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
4438, 43syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
456adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ Fin)
4644, 45eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin)
47 eqid 2735 . . . . . . . . . . . . . 14 (Base‘(𝐺s (𝐺 DProd 𝑆))) = (Base‘(𝐺s (𝐺 DProd 𝑆)))
4847lagsubg 19226 . . . . . . . . . . . . 13 (((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ∧ (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
4942, 46, 48syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5044fveq2d 6911 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) = (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5149, 50breqtrrd 5176 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(𝐺 DProd 𝑆)))
5227, 51eqbrtrrd 5172 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))
5314sselda 3995 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
548nn0zd 12637 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
5554adantr 480 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
56 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
57 ablgrp 19818 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
582grpbn0 18997 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
5913, 57, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ∅)
60 hashnncl 14402 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
611, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
6259, 61mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐵) ∈ ℕ)
6362adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → (♯‘𝐵) ∈ ℕ)
6456, 63pccld 16884 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
6553, 64syldan 591 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
66 pcdvdsb 16903 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6753, 55, 65, 66syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6852, 67mpbird 257 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
6968adantlr 715 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
7026, 69syldan 591 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
71 pceq0 16905 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7256, 63, 71syl2anc 584 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7372biimpar 477 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) = 0)
74 eqid 2735 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
7574subg0cl 19165 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd 𝑆))
76 ne0i 4347 . . . . . . . . . . . . . 14 ((0g𝐺) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅)
7717, 75, 763syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 DProd 𝑆) ≠ ∅)
78 hashnncl 14402 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ Fin → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
796, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
8077, 79mpbird 257 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8180adantr 480 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ℙ) → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8256, 81pccld 16884 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ∈ ℕ0)
8382nn0ge0d 12588 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8483adantr 480 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8573, 84eqbrtrd 5170 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8670, 85pm2.61dan 813 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8786ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8810nn0zd 12637 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
89 pc2dvds 16913 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9088, 54, 89syl2anc 584 . . . . 5 (𝜑 → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9187, 90mpbird 257 . . . 4 (𝜑 → (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))
92 dvdseq 16348 . . . 4 ((((♯‘(𝐺 DProd 𝑆)) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵) ∧ (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))) → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
938, 10, 19, 91, 92syl22anc 839 . . 3 (𝜑 → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
94 hashen 14383 . . . 4 (((𝐺 DProd 𝑆) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
956, 1, 94syl2anc 584 . . 3 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
9693, 95mpbid 232 . 2 (𝜑 → (𝐺 DProd 𝑆) ≈ 𝐵)
97 fisseneq 9291 . 2 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵 ∧ (𝐺 DProd 𝑆) ≈ 𝐵) → (𝐺 DProd 𝑆) = 𝐵)
981, 4, 96, 97syl3anc 1370 1 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  wss 3963  c0 4339   class class class wbr 5148  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  cen 8981  Fincfn 8984  0cc0 11153  cle 11294  cn 12264  0cn0 12524  cz 12611  cexp 14099  chash 14366  cdvds 16287  cprime 16705   pCnt cpc 16870  Basecbs 17245  s cress 17274  0gc0g 17486  Grpcgrp 18964  SubGrpcsubg 19151  odcod 19557  Abelcabl 19814   DProd cdprd 20028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-gsum 17489  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-eqg 19156  df-ghm 19244  df-gim 19290  df-ga 19321  df-cntz 19348  df-oppg 19377  df-od 19561  df-lsm 19669  df-pj1 19670  df-cmn 19815  df-abl 19816  df-dprd 20030
This theorem is referenced by:  ablfaclem2  20121
  Copyright terms: Public domain W3C validator