MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ablfac1c Structured version   Visualization version   GIF version

Theorem ablfac1c 19195
Description: The factors of ablfac1b 19194 cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablfac1.b 𝐵 = (Base‘𝐺)
ablfac1.o 𝑂 = (od‘𝐺)
ablfac1.s 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
ablfac1.g (𝜑𝐺 ∈ Abel)
ablfac1.f (𝜑𝐵 ∈ Fin)
ablfac1.1 (𝜑𝐴 ⊆ ℙ)
ablfac1c.d 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
ablfac1.2 (𝜑𝐷𝐴)
Assertion
Ref Expression
ablfac1c (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Distinct variable groups:   𝑤,𝑝,𝑥,𝐵   𝐷,𝑝,𝑥   𝜑,𝑝,𝑤,𝑥   𝐴,𝑝,𝑥   𝑂,𝑝,𝑥   𝐺,𝑝,𝑥
Allowed substitution hints:   𝐴(𝑤)   𝐷(𝑤)   𝑆(𝑥,𝑤,𝑝)   𝐺(𝑤)   𝑂(𝑤)

Proof of Theorem ablfac1c
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 ablfac1.f . 2 (𝜑𝐵 ∈ Fin)
2 ablfac1.b . . . 4 𝐵 = (Base‘𝐺)
32dprdssv 19140 . . 3 (𝐺 DProd 𝑆) ⊆ 𝐵
43a1i 11 . 2 (𝜑 → (𝐺 DProd 𝑆) ⊆ 𝐵)
5 ssfi 8740 . . . . . 6 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵) → (𝐺 DProd 𝑆) ∈ Fin)
61, 3, 5sylancl 588 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ Fin)
7 hashcl 13720 . . . . 5 ((𝐺 DProd 𝑆) ∈ Fin → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
86, 7syl 17 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ0)
9 hashcl 13720 . . . . 5 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
101, 9syl 17 . . . 4 (𝜑 → (♯‘𝐵) ∈ ℕ0)
11 ablfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
12 ablfac1.s . . . . . . 7 𝑆 = (𝑝𝐴 ↦ {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))})
13 ablfac1.g . . . . . . 7 (𝜑𝐺 ∈ Abel)
14 ablfac1.1 . . . . . . 7 (𝜑𝐴 ⊆ ℙ)
152, 11, 12, 13, 1, 14ablfac1b 19194 . . . . . 6 (𝜑𝐺dom DProd 𝑆)
16 dprdsubg 19148 . . . . . 6 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
1715, 16syl 17 . . . . 5 (𝜑 → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
182lagsubg 18344 . . . . 5 (((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) ∧ 𝐵 ∈ Fin) → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
1917, 1, 18syl2anc 586 . . . 4 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵))
20 breq1 5071 . . . . . . . . . . 11 (𝑤 = 𝑞 → (𝑤 ∥ (♯‘𝐵) ↔ 𝑞 ∥ (♯‘𝐵)))
21 ablfac1c.d . . . . . . . . . . 11 𝐷 = {𝑤 ∈ ℙ ∣ 𝑤 ∥ (♯‘𝐵)}
2220, 21elrab2 3685 . . . . . . . . . 10 (𝑞𝐷 ↔ (𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)))
23 ablfac1.2 . . . . . . . . . . 11 (𝜑𝐷𝐴)
2423sseld 3968 . . . . . . . . . 10 (𝜑 → (𝑞𝐷𝑞𝐴))
2522, 24syl5bir 245 . . . . . . . . 9 (𝜑 → ((𝑞 ∈ ℙ ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴))
2625impl 458 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → 𝑞𝐴)
272, 11, 12, 13, 1, 14ablfac1a 19193 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) = (𝑞↑(𝑞 pCnt (♯‘𝐵))))
282fvexi 6686 . . . . . . . . . . . . . . . . . . 19 𝐵 ∈ V
2928rabex 5237 . . . . . . . . . . . . . . . . . 18 {𝑥𝐵 ∣ (𝑂𝑥) ∥ (𝑝↑(𝑝 pCnt (♯‘𝐵)))} ∈ V
3029, 12dmmpti 6494 . . . . . . . . . . . . . . . . 17 dom 𝑆 = 𝐴
3130a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝑆 = 𝐴)
3215, 31dprdf2 19131 . . . . . . . . . . . . . . 15 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3332ffvelrnda 6853 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘𝐺))
3415adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝐺dom DProd 𝑆)
3530a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → dom 𝑆 = 𝐴)
36 simpr 487 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → 𝑞𝐴)
3734, 35, 36dprdub 19149 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))
3817adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺))
39 eqid 2823 . . . . . . . . . . . . . . . 16 (𝐺s (𝐺 DProd 𝑆)) = (𝐺s (𝐺 DProd 𝑆))
4039subsubg 18304 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4138, 40syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → ((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ↔ ((𝑆𝑞) ∈ (SubGrp‘𝐺) ∧ (𝑆𝑞) ⊆ (𝐺 DProd 𝑆))))
4233, 37, 41mpbir2and 711 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))))
4339subgbas 18285 . . . . . . . . . . . . . . 15 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
4438, 43syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) = (Base‘(𝐺s (𝐺 DProd 𝑆))))
456adantr 483 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐴) → (𝐺 DProd 𝑆) ∈ Fin)
4644, 45eqeltrrd 2916 . . . . . . . . . . . . 13 ((𝜑𝑞𝐴) → (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin)
47 eqid 2823 . . . . . . . . . . . . . 14 (Base‘(𝐺s (𝐺 DProd 𝑆))) = (Base‘(𝐺s (𝐺 DProd 𝑆)))
4847lagsubg 18344 . . . . . . . . . . . . 13 (((𝑆𝑞) ∈ (SubGrp‘(𝐺s (𝐺 DProd 𝑆))) ∧ (Base‘(𝐺s (𝐺 DProd 𝑆))) ∈ Fin) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
4942, 46, 48syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5044fveq2d 6676 . . . . . . . . . . . 12 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) = (♯‘(Base‘(𝐺s (𝐺 DProd 𝑆)))))
5149, 50breqtrrd 5096 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝑆𝑞)) ∥ (♯‘(𝐺 DProd 𝑆)))
5227, 51eqbrtrrd 5092 . . . . . . . . . 10 ((𝜑𝑞𝐴) → (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆)))
5314sselda 3969 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → 𝑞 ∈ ℙ)
548nn0zd 12088 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
5554adantr 483 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (♯‘(𝐺 DProd 𝑆)) ∈ ℤ)
56 simpr 487 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → 𝑞 ∈ ℙ)
57 ablgrp 18913 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
582grpbn0 18134 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
5913, 57, 583syl 18 . . . . . . . . . . . . . . 15 (𝜑𝐵 ≠ ∅)
60 hashnncl 13730 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
611, 60syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
6259, 61mpbird 259 . . . . . . . . . . . . . 14 (𝜑 → (♯‘𝐵) ∈ ℕ)
6362adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑞 ∈ ℙ) → (♯‘𝐵) ∈ ℕ)
6456, 63pccld 16189 . . . . . . . . . . . 12 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
6553, 64syldan 593 . . . . . . . . . . 11 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0)
66 pcdvdsb 16207 . . . . . . . . . . 11 ((𝑞 ∈ ℙ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ ∧ (𝑞 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6753, 55, 65, 66syl3anc 1367 . . . . . . . . . 10 ((𝜑𝑞𝐴) → ((𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ↔ (𝑞↑(𝑞 pCnt (♯‘𝐵))) ∥ (♯‘(𝐺 DProd 𝑆))))
6852, 67mpbird 259 . . . . . . . . 9 ((𝜑𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
6968adantlr 713 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞𝐴) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
7026, 69syldan 593 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
71 pceq0 16209 . . . . . . . . . 10 ((𝑞 ∈ ℙ ∧ (♯‘𝐵) ∈ ℕ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7256, 63, 71syl2anc 586 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → ((𝑞 pCnt (♯‘𝐵)) = 0 ↔ ¬ 𝑞 ∥ (♯‘𝐵)))
7372biimpar 480 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) = 0)
74 eqid 2823 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
7574subg0cl 18289 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ (SubGrp‘𝐺) → (0g𝐺) ∈ (𝐺 DProd 𝑆))
76 ne0i 4302 . . . . . . . . . . . . . 14 ((0g𝐺) ∈ (𝐺 DProd 𝑆) → (𝐺 DProd 𝑆) ≠ ∅)
7717, 75, 763syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝐺 DProd 𝑆) ≠ ∅)
78 hashnncl 13730 . . . . . . . . . . . . . 14 ((𝐺 DProd 𝑆) ∈ Fin → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
796, 78syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) ∈ ℕ ↔ (𝐺 DProd 𝑆) ≠ ∅))
8077, 79mpbird 259 . . . . . . . . . . . 12 (𝜑 → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8180adantr 483 . . . . . . . . . . 11 ((𝜑𝑞 ∈ ℙ) → (♯‘(𝐺 DProd 𝑆)) ∈ ℕ)
8256, 81pccld 16189 . . . . . . . . . 10 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))) ∈ ℕ0)
8382nn0ge0d 11961 . . . . . . . . 9 ((𝜑𝑞 ∈ ℙ) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8483adantr 483 . . . . . . . 8 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → 0 ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8573, 84eqbrtrd 5090 . . . . . . 7 (((𝜑𝑞 ∈ ℙ) ∧ ¬ 𝑞 ∥ (♯‘𝐵)) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8670, 85pm2.61dan 811 . . . . . 6 ((𝜑𝑞 ∈ ℙ) → (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8786ralrimiva 3184 . . . . 5 (𝜑 → ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆))))
8810nn0zd 12088 . . . . . 6 (𝜑 → (♯‘𝐵) ∈ ℤ)
89 pc2dvds 16217 . . . . . 6 (((♯‘𝐵) ∈ ℤ ∧ (♯‘(𝐺 DProd 𝑆)) ∈ ℤ) → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9088, 54, 89syl2anc 586 . . . . 5 (𝜑 → ((♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)) ↔ ∀𝑞 ∈ ℙ (𝑞 pCnt (♯‘𝐵)) ≤ (𝑞 pCnt (♯‘(𝐺 DProd 𝑆)))))
9187, 90mpbird 259 . . . 4 (𝜑 → (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))
92 dvdseq 15666 . . . 4 ((((♯‘(𝐺 DProd 𝑆)) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((♯‘(𝐺 DProd 𝑆)) ∥ (♯‘𝐵) ∧ (♯‘𝐵) ∥ (♯‘(𝐺 DProd 𝑆)))) → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
938, 10, 19, 91, 92syl22anc 836 . . 3 (𝜑 → (♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵))
94 hashen 13710 . . . 4 (((𝐺 DProd 𝑆) ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
956, 1, 94syl2anc 586 . . 3 (𝜑 → ((♯‘(𝐺 DProd 𝑆)) = (♯‘𝐵) ↔ (𝐺 DProd 𝑆) ≈ 𝐵))
9693, 95mpbid 234 . 2 (𝜑 → (𝐺 DProd 𝑆) ≈ 𝐵)
97 fisseneq 8731 . 2 ((𝐵 ∈ Fin ∧ (𝐺 DProd 𝑆) ⊆ 𝐵 ∧ (𝐺 DProd 𝑆) ≈ 𝐵) → (𝐺 DProd 𝑆) = 𝐵)
981, 4, 96, 97syl3anc 1367 1 (𝜑 → (𝐺 DProd 𝑆) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148  dom cdm 5557  cfv 6357  (class class class)co 7158  cen 8508  Fincfn 8511  0cc0 10539  cle 10678  cn 11640  0cn0 11900  cz 11984  cexp 13432  chash 13693  cdvds 15609  cprime 16017   pCnt cpc 16175  Basecbs 16485  s cress 16486  0gc0g 16715  Grpcgrp 18105  SubGrpcsubg 18275  odcod 18654  Abelcabl 18909   DProd cdprd 19117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-er 8291  df-ec 8293  df-qs 8297  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-acn 9373  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-eqg 18280  df-ghm 18358  df-gim 18401  df-ga 18422  df-cntz 18449  df-oppg 18476  df-od 18658  df-lsm 18763  df-pj1 18764  df-cmn 18910  df-abl 18911  df-dprd 19119
This theorem is referenced by:  ablfaclem2  19210
  Copyright terms: Public domain W3C validator