Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pgpfi2 | Structured version Visualization version GIF version |
Description: Alternate version of pgpfi 19255. (Contributed by Mario Carneiro, 27-Apr-2016.) |
Ref | Expression |
---|---|
pgpfi.1 | ⊢ 𝑋 = (Base‘𝐺) |
Ref | Expression |
---|---|
pgpfi2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpfi.1 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | pgpfi 19255 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛)))) |
3 | id 22 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℙ) | |
4 | 1 | grpbn0 18653 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
5 | hashnncl 14126 | . . . . . 6 ⊢ (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
6 | 4, 5 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ)) |
7 | 6 | imp 408 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (♯‘𝑋) ∈ ℕ) |
8 | pcprmpw 16629 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) | |
9 | 3, 7, 8 | syl2anr 598 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))) |
10 | 9 | pm5.32da 580 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃↑𝑛)) ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
11 | 2, 10 | bitrd 279 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 ∅c0 4262 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 Fincfn 8764 ℕcn 12019 ℕ0cn0 12279 ↑cexp 13828 ♯chash 14090 ℙcprime 16421 pCnt cpc 16582 Basecbs 16957 Grpcgrp 18622 pGrp cpgp 19179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9443 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-disj 5047 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-omul 8333 df-er 8529 df-ec 8531 df-qs 8535 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-inf 9246 df-oi 9313 df-dju 9703 df-card 9741 df-acn 9744 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-fz 13286 df-fzo 13429 df-fl 13558 df-mod 13636 df-seq 13768 df-exp 13829 df-fac 14034 df-bc 14063 df-hash 14091 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-clim 15242 df-sum 15443 df-dvds 16009 df-gcd 16247 df-prm 16422 df-pc 16583 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-grp 18625 df-minusg 18626 df-sbg 18627 df-mulg 18746 df-subg 18797 df-eqg 18799 df-ga 18941 df-od 19181 df-pgp 19183 |
This theorem is referenced by: pgphash 19257 ablfaclem3 19735 |
Copyright terms: Public domain | W3C validator |