MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfi2 Structured version   Visualization version   GIF version

Theorem pgpfi2 19287
Description: Alternate version of pgpfi 19286. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
pgpfi.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
pgpfi2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))

Proof of Theorem pgpfi2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 pgpfi.1 . . 3 𝑋 = (Base‘𝐺)
21pgpfi 19286 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛))))
3 id 22 . . . 4 (𝑃 ∈ ℙ → 𝑃 ∈ ℙ)
41grpbn0 18684 . . . . . 6 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
5 hashnncl 14160 . . . . . 6 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
64, 5syl5ibrcom 246 . . . . 5 (𝐺 ∈ Grp → (𝑋 ∈ Fin → (♯‘𝑋) ∈ ℕ))
76imp 407 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (♯‘𝑋) ∈ ℕ)
8 pcprmpw 16661 . . . 4 ((𝑃 ∈ ℙ ∧ (♯‘𝑋) ∈ ℕ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
93, 7, 8syl2anr 597 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑃 ∈ ℙ) → (∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛) ↔ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋)))))
109pm5.32da 579 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ((𝑃 ∈ ℙ ∧ ∃𝑛 ∈ ℕ0 (♯‘𝑋) = (𝑃𝑛)) ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
112, 10bitrd 278 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → (𝑃 pGrp 𝐺 ↔ (𝑃 ∈ ℙ ∧ (♯‘𝑋) = (𝑃↑(𝑃 pCnt (♯‘𝑋))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2941  wrex 3071  c0 4267   class class class wbr 5087  cfv 6466  (class class class)co 7317  Fincfn 8783  cn 12053  0cn0 12313  cexp 13862  chash 14124  cprime 16453   pCnt cpc 16614  Basecbs 16989  Grpcgrp 18653   pGrp cpgp 19210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-inf2 9477  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-disj 5053  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-oadd 8350  df-omul 8351  df-er 8548  df-ec 8550  df-qs 8554  df-map 8667  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-sup 9278  df-inf 9279  df-oi 9346  df-dju 9737  df-card 9775  df-acn 9778  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-div 11713  df-nn 12054  df-2 12116  df-3 12117  df-n0 12314  df-xnn0 12386  df-z 12400  df-uz 12663  df-q 12769  df-rp 12811  df-fz 13320  df-fzo 13463  df-fl 13592  df-mod 13670  df-seq 13802  df-exp 13863  df-fac 14068  df-bc 14097  df-hash 14125  df-cj 14889  df-re 14890  df-im 14891  df-sqrt 15025  df-abs 15026  df-clim 15276  df-sum 15477  df-dvds 16043  df-gcd 16281  df-prm 16454  df-pc 16615  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-0g 17229  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-submnd 18508  df-grp 18656  df-minusg 18657  df-sbg 18658  df-mulg 18777  df-subg 18828  df-eqg 18830  df-ga 18972  df-od 19212  df-pgp 19214
This theorem is referenced by:  pgphash  19288  ablfaclem3  19765
  Copyright terms: Public domain W3C validator