Proof of Theorem 0ringnnzr
| Step | Hyp | Ref
| Expression |
| 1 | | 1re 11261 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 2 | 1 | ltnri 11370 |
. . . . . . 7
⊢ ¬ 1
< 1 |
| 3 | | breq2 5147 |
. . . . . . 7
⊢
((♯‘(Base‘𝑅)) = 1 → (1 <
(♯‘(Base‘𝑅)) ↔ 1 < 1)) |
| 4 | 2, 3 | mtbiri 327 |
. . . . . 6
⊢
((♯‘(Base‘𝑅)) = 1 → ¬ 1 <
(♯‘(Base‘𝑅))) |
| 5 | 4 | adantl 481 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧
(♯‘(Base‘𝑅)) = 1) → ¬ 1 <
(♯‘(Base‘𝑅))) |
| 6 | 5 | intnand 488 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧
(♯‘(Base‘𝑅)) = 1) → ¬ (𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅)))) |
| 7 | 6 | ex 412 |
. . 3
⊢ (𝑅 ∈ Ring →
((♯‘(Base‘𝑅)) = 1 → ¬ (𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))))) |
| 8 | | ianor 984 |
. . . . 5
⊢ (¬
(𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))) ↔ (¬ 𝑅 ∈ Ring ∨ ¬ 1 <
(♯‘(Base‘𝑅)))) |
| 9 | | pm2.21 123 |
. . . . . 6
⊢ (¬
𝑅 ∈ Ring → (𝑅 ∈ Ring →
(♯‘(Base‘𝑅)) = 1)) |
| 10 | | fvex 6919 |
. . . . . . . . . 10
⊢
(Base‘𝑅)
∈ V |
| 11 | | hashxrcl 14396 |
. . . . . . . . . 10
⊢
((Base‘𝑅)
∈ V → (♯‘(Base‘𝑅)) ∈
ℝ*) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢
(♯‘(Base‘𝑅)) ∈
ℝ* |
| 13 | | 1xr 11320 |
. . . . . . . . 9
⊢ 1 ∈
ℝ* |
| 14 | | xrlenlt 11326 |
. . . . . . . . 9
⊢
(((♯‘(Base‘𝑅)) ∈ ℝ* ∧ 1 ∈
ℝ*) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 <
(♯‘(Base‘𝑅)))) |
| 15 | 12, 13, 14 | mp2an 692 |
. . . . . . . 8
⊢
((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 <
(♯‘(Base‘𝑅))) |
| 16 | 15 | bicomi 224 |
. . . . . . 7
⊢ (¬ 1
< (♯‘(Base‘𝑅)) ↔ (♯‘(Base‘𝑅)) ≤ 1) |
| 17 | | simpr 484 |
. . . . . . . . . 10
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) →
(♯‘(Base‘𝑅)) ≤ 1) |
| 18 | | 1nn0 12542 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℕ0 |
| 19 | | hashbnd 14375 |
. . . . . . . . . . . . 13
⊢
(((Base‘𝑅)
∈ V ∧ 1 ∈ ℕ0 ∧
(♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin) |
| 20 | 10, 18, 17, 19 | mp3an12i 1467 |
. . . . . . . . . . . 12
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin) |
| 21 | | hashcl 14395 |
. . . . . . . . . . . . 13
⊢
((Base‘𝑅)
∈ Fin → (♯‘(Base‘𝑅)) ∈
ℕ0) |
| 22 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) →
(♯‘(Base‘𝑅)) ∈
ℕ0) |
| 23 | | hasheq0 14402 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Base‘𝑅)
∈ V → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅)) |
| 24 | 10, 23 | mp1i 13 |
. . . . . . . . . . . . . . . . . . 19
⊢
((♯‘(Base‘𝑅)) ∈ ℕ0 →
((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅)) |
| 25 | 24 | biimpd 229 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘(Base‘𝑅)) ∈ ℕ0 →
((♯‘(Base‘𝑅)) = 0 → (Base‘𝑅) = ∅)) |
| 26 | 25 | necon3d 2961 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘(Base‘𝑅)) ∈ ℕ0 →
((Base‘𝑅) ≠
∅ → (♯‘(Base‘𝑅)) ≠ 0)) |
| 27 | 26 | impcom 407 |
. . . . . . . . . . . . . . . 16
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) →
(♯‘(Base‘𝑅)) ≠ 0) |
| 28 | | elnnne0 12540 |
. . . . . . . . . . . . . . . 16
⊢
((♯‘(Base‘𝑅)) ∈ ℕ ↔
((♯‘(Base‘𝑅)) ∈ ℕ0 ∧
(♯‘(Base‘𝑅)) ≠ 0)) |
| 29 | 22, 27, 28 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) →
(♯‘(Base‘𝑅)) ∈ ℕ) |
| 30 | 29 | ex 412 |
. . . . . . . . . . . . . 14
⊢
((Base‘𝑅) ≠
∅ → ((♯‘(Base‘𝑅)) ∈ ℕ0 →
(♯‘(Base‘𝑅)) ∈ ℕ)) |
| 31 | 30 | adantr 480 |
. . . . . . . . . . . . 13
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) →
((♯‘(Base‘𝑅)) ∈ ℕ0 →
(♯‘(Base‘𝑅)) ∈ ℕ)) |
| 32 | 21, 31 | syl5com 31 |
. . . . . . . . . . . 12
⊢
((Base‘𝑅)
∈ Fin → (((Base‘𝑅) ≠ ∅ ∧
(♯‘(Base‘𝑅)) ≤ 1) →
(♯‘(Base‘𝑅)) ∈ ℕ)) |
| 33 | 20, 32 | mpcom 38 |
. . . . . . . . . . 11
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) →
(♯‘(Base‘𝑅)) ∈ ℕ) |
| 34 | | nnle1eq1 12296 |
. . . . . . . . . . 11
⊢
((♯‘(Base‘𝑅)) ∈ ℕ →
((♯‘(Base‘𝑅)) ≤ 1 ↔
(♯‘(Base‘𝑅)) = 1)) |
| 35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) →
((♯‘(Base‘𝑅)) ≤ 1 ↔
(♯‘(Base‘𝑅)) = 1)) |
| 36 | 17, 35 | mpbid 232 |
. . . . . . . . 9
⊢
(((Base‘𝑅)
≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) →
(♯‘(Base‘𝑅)) = 1) |
| 37 | 36 | ex 412 |
. . . . . . . 8
⊢
((Base‘𝑅) ≠
∅ → ((♯‘(Base‘𝑅)) ≤ 1 →
(♯‘(Base‘𝑅)) = 1)) |
| 38 | | ringgrp 20235 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 39 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 40 | 39 | grpbn0 18984 |
. . . . . . . . 9
⊢ (𝑅 ∈ Grp →
(Base‘𝑅) ≠
∅) |
| 41 | 38, 40 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring →
(Base‘𝑅) ≠
∅) |
| 42 | 37, 41 | syl11 33 |
. . . . . . 7
⊢
((♯‘(Base‘𝑅)) ≤ 1 → (𝑅 ∈ Ring →
(♯‘(Base‘𝑅)) = 1)) |
| 43 | 16, 42 | sylbi 217 |
. . . . . 6
⊢ (¬ 1
< (♯‘(Base‘𝑅)) → (𝑅 ∈ Ring →
(♯‘(Base‘𝑅)) = 1)) |
| 44 | 9, 43 | jaoi 858 |
. . . . 5
⊢ ((¬
𝑅 ∈ Ring ∨ ¬ 1
< (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring →
(♯‘(Base‘𝑅)) = 1)) |
| 45 | 8, 44 | sylbi 217 |
. . . 4
⊢ (¬
(𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))) → (𝑅 ∈ Ring →
(♯‘(Base‘𝑅)) = 1)) |
| 46 | 45 | com12 32 |
. . 3
⊢ (𝑅 ∈ Ring → (¬
(𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))) → (♯‘(Base‘𝑅)) = 1)) |
| 47 | 7, 46 | impbid 212 |
. 2
⊢ (𝑅 ∈ Ring →
((♯‘(Base‘𝑅)) = 1 ↔ ¬ (𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))))) |
| 48 | 39 | isnzr2hash 20519 |
. . . 4
⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅)))) |
| 49 | 48 | bicomi 224 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))) ↔ 𝑅 ∈ NzRing) |
| 50 | 49 | notbii 320 |
. 2
⊢ (¬
(𝑅 ∈ Ring ∧ 1 <
(♯‘(Base‘𝑅))) ↔ ¬ 𝑅 ∈ NzRing) |
| 51 | 47, 50 | bitrdi 287 |
1
⊢ (𝑅 ∈ Ring →
((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) |