MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringnnzr Structured version   Visualization version   GIF version

Theorem 0ringnnzr 20444
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
0ringnnzr (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))

Proof of Theorem 0ringnnzr
StepHypRef Expression
1 1re 11121 . . . . . . . 8 1 ∈ ℝ
21ltnri 11231 . . . . . . 7 ¬ 1 < 1
3 breq2 5099 . . . . . . 7 ((♯‘(Base‘𝑅)) = 1 → (1 < (♯‘(Base‘𝑅)) ↔ 1 < 1))
42, 3mtbiri 327 . . . . . 6 ((♯‘(Base‘𝑅)) = 1 → ¬ 1 < (♯‘(Base‘𝑅)))
54adantl 481 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ 1 < (♯‘(Base‘𝑅)))
65intnand 488 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
76ex 412 . . 3 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
8 ianor 983 . . . . 5 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ (¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))))
9 pm2.21 123 . . . . . 6 𝑅 ∈ Ring → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
10 fvex 6843 . . . . . . . . . 10 (Base‘𝑅) ∈ V
11 hashxrcl 14268 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘(Base‘𝑅)) ∈ ℝ*)
1210, 11ax-mp 5 . . . . . . . . 9 (♯‘(Base‘𝑅)) ∈ ℝ*
13 1xr 11180 . . . . . . . . 9 1 ∈ ℝ*
14 xrlenlt 11186 . . . . . . . . 9 (((♯‘(Base‘𝑅)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅))))
1512, 13, 14mp2an 692 . . . . . . . 8 ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅)))
1615bicomi 224 . . . . . . 7 (¬ 1 < (♯‘(Base‘𝑅)) ↔ (♯‘(Base‘𝑅)) ≤ 1)
17 simpr 484 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ≤ 1)
18 1nn0 12406 . . . . . . . . . . . . 13 1 ∈ ℕ0
19 hashbnd 14247 . . . . . . . . . . . . 13 (((Base‘𝑅) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
2010, 18, 17, 19mp3an12i 1467 . . . . . . . . . . . 12 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
21 hashcl 14267 . . . . . . . . . . . . 13 ((Base‘𝑅) ∈ Fin → (♯‘(Base‘𝑅)) ∈ ℕ0)
22 simpr 484 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ0)
23 hasheq0 14274 . . . . . . . . . . . . . . . . . . . 20 ((Base‘𝑅) ∈ V → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2410, 23mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2524biimpd 229 . . . . . . . . . . . . . . . . . 18 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 → (Base‘𝑅) = ∅))
2625necon3d 2950 . . . . . . . . . . . . . . . . 17 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((Base‘𝑅) ≠ ∅ → (♯‘(Base‘𝑅)) ≠ 0))
2726impcom 407 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ≠ 0)
28 elnnne0 12404 . . . . . . . . . . . . . . . 16 ((♯‘(Base‘𝑅)) ∈ ℕ ↔ ((♯‘(Base‘𝑅)) ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≠ 0))
2922, 27, 28sylanbrc 583 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ)
3029ex 412 . . . . . . . . . . . . . 14 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3130adantr 480 . . . . . . . . . . . . 13 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3221, 31syl5com 31 . . . . . . . . . . . 12 ((Base‘𝑅) ∈ Fin → (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ))
3320, 32mpcom 38 . . . . . . . . . . 11 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ)
34 nnle1eq1 12164 . . . . . . . . . . 11 ((♯‘(Base‘𝑅)) ∈ ℕ → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3533, 34syl 17 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3617, 35mpbid 232 . . . . . . . . 9 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) = 1)
3736ex 412 . . . . . . . 8 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ≤ 1 → (♯‘(Base‘𝑅)) = 1))
38 ringgrp 20160 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
39 eqid 2733 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4039grpbn0 18883 . . . . . . . . 9 (𝑅 ∈ Grp → (Base‘𝑅) ≠ ∅)
4138, 40syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ≠ ∅)
4237, 41syl11 33 . . . . . . 7 ((♯‘(Base‘𝑅)) ≤ 1 → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4316, 42sylbi 217 . . . . . 6 (¬ 1 < (♯‘(Base‘𝑅)) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
449, 43jaoi 857 . . . . 5 ((¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
458, 44sylbi 217 . . . 4 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4645com12 32 . . 3 (𝑅 ∈ Ring → (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (♯‘(Base‘𝑅)) = 1))
477, 46impbid 212 . 2 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
4839isnzr2hash 20438 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
4948bicomi 224 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ 𝑅 ∈ NzRing)
5049notbii 320 . 2 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ ¬ 𝑅 ∈ NzRing)
5147, 50bitrdi 287 1 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  c0 4282   class class class wbr 5095  cfv 6488  Fincfn 8877  0cc0 11015  1c1 11016  *cxr 11154   < clt 11155  cle 11156  cn 12134  0cn0 12390  chash 14241  Basecbs 17124  Grpcgrp 18850  Ringcrg 20155  NzRingcnzr 20431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-oadd 8397  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-dju 9803  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-n0 12391  df-xnn0 12464  df-z 12478  df-uz 12741  df-fz 13412  df-hash 14242  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-nzr 20432
This theorem is referenced by:  0ringdif  20446  0ring1eq0  20452  rng1nnzr  20694  prmidl0  33424  qsdrng  33471  0ringirng  33725  lmod0rng  48356  lindszr  48597
  Copyright terms: Public domain W3C validator