MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringnnzr Structured version   Visualization version   GIF version

Theorem 0ringnnzr 20428
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
0ringnnzr (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))

Proof of Theorem 0ringnnzr
StepHypRef Expression
1 1re 11134 . . . . . . . 8 1 ∈ ℝ
21ltnri 11243 . . . . . . 7 ¬ 1 < 1
3 breq2 5099 . . . . . . 7 ((♯‘(Base‘𝑅)) = 1 → (1 < (♯‘(Base‘𝑅)) ↔ 1 < 1))
42, 3mtbiri 327 . . . . . 6 ((♯‘(Base‘𝑅)) = 1 → ¬ 1 < (♯‘(Base‘𝑅)))
54adantl 481 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ 1 < (♯‘(Base‘𝑅)))
65intnand 488 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
76ex 412 . . 3 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
8 ianor 983 . . . . 5 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ (¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))))
9 pm2.21 123 . . . . . 6 𝑅 ∈ Ring → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
10 fvex 6839 . . . . . . . . . 10 (Base‘𝑅) ∈ V
11 hashxrcl 14282 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘(Base‘𝑅)) ∈ ℝ*)
1210, 11ax-mp 5 . . . . . . . . 9 (♯‘(Base‘𝑅)) ∈ ℝ*
13 1xr 11193 . . . . . . . . 9 1 ∈ ℝ*
14 xrlenlt 11199 . . . . . . . . 9 (((♯‘(Base‘𝑅)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅))))
1512, 13, 14mp2an 692 . . . . . . . 8 ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅)))
1615bicomi 224 . . . . . . 7 (¬ 1 < (♯‘(Base‘𝑅)) ↔ (♯‘(Base‘𝑅)) ≤ 1)
17 simpr 484 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ≤ 1)
18 1nn0 12418 . . . . . . . . . . . . 13 1 ∈ ℕ0
19 hashbnd 14261 . . . . . . . . . . . . 13 (((Base‘𝑅) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
2010, 18, 17, 19mp3an12i 1467 . . . . . . . . . . . 12 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
21 hashcl 14281 . . . . . . . . . . . . 13 ((Base‘𝑅) ∈ Fin → (♯‘(Base‘𝑅)) ∈ ℕ0)
22 simpr 484 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ0)
23 hasheq0 14288 . . . . . . . . . . . . . . . . . . . 20 ((Base‘𝑅) ∈ V → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2410, 23mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2524biimpd 229 . . . . . . . . . . . . . . . . . 18 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 → (Base‘𝑅) = ∅))
2625necon3d 2946 . . . . . . . . . . . . . . . . 17 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((Base‘𝑅) ≠ ∅ → (♯‘(Base‘𝑅)) ≠ 0))
2726impcom 407 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ≠ 0)
28 elnnne0 12416 . . . . . . . . . . . . . . . 16 ((♯‘(Base‘𝑅)) ∈ ℕ ↔ ((♯‘(Base‘𝑅)) ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≠ 0))
2922, 27, 28sylanbrc 583 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ)
3029ex 412 . . . . . . . . . . . . . 14 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3130adantr 480 . . . . . . . . . . . . 13 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3221, 31syl5com 31 . . . . . . . . . . . 12 ((Base‘𝑅) ∈ Fin → (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ))
3320, 32mpcom 38 . . . . . . . . . . 11 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ)
34 nnle1eq1 12176 . . . . . . . . . . 11 ((♯‘(Base‘𝑅)) ∈ ℕ → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3533, 34syl 17 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3617, 35mpbid 232 . . . . . . . . 9 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) = 1)
3736ex 412 . . . . . . . 8 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ≤ 1 → (♯‘(Base‘𝑅)) = 1))
38 ringgrp 20141 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
39 eqid 2729 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4039grpbn0 18863 . . . . . . . . 9 (𝑅 ∈ Grp → (Base‘𝑅) ≠ ∅)
4138, 40syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ≠ ∅)
4237, 41syl11 33 . . . . . . 7 ((♯‘(Base‘𝑅)) ≤ 1 → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4316, 42sylbi 217 . . . . . 6 (¬ 1 < (♯‘(Base‘𝑅)) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
449, 43jaoi 857 . . . . 5 ((¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
458, 44sylbi 217 . . . 4 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4645com12 32 . . 3 (𝑅 ∈ Ring → (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (♯‘(Base‘𝑅)) = 1))
477, 46impbid 212 . 2 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
4839isnzr2hash 20422 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
4948bicomi 224 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ 𝑅 ∈ NzRing)
5049notbii 320 . 2 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ ¬ 𝑅 ∈ NzRing)
5147, 50bitrdi 287 1 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  c0 4286   class class class wbr 5095  cfv 6486  Fincfn 8879  0cc0 11028  1c1 11029  *cxr 11167   < clt 11168  cle 11169  cn 12146  0cn0 12402  chash 14255  Basecbs 17138  Grpcgrp 18830  Ringcrg 20136  NzRingcnzr 20415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-nzr 20416
This theorem is referenced by:  0ringdif  20430  0ring1eq0  20436  rng1nnzr  20678  prmidl0  33400  qsdrng  33447  0ringirng  33663  lmod0rng  48217  lindszr  48458
  Copyright terms: Public domain W3C validator