MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringnnzr Structured version   Visualization version   GIF version

Theorem 0ringnnzr 19637
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
0ringnnzr (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))

Proof of Theorem 0ringnnzr
StepHypRef Expression
1 1re 10363 . . . . . . . 8 1 ∈ ℝ
21ltnri 10472 . . . . . . 7 ¬ 1 < 1
3 breq2 4879 . . . . . . 7 ((♯‘(Base‘𝑅)) = 1 → (1 < (♯‘(Base‘𝑅)) ↔ 1 < 1))
42, 3mtbiri 319 . . . . . 6 ((♯‘(Base‘𝑅)) = 1 → ¬ 1 < (♯‘(Base‘𝑅)))
54adantl 475 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ 1 < (♯‘(Base‘𝑅)))
65intnand 484 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
76ex 403 . . 3 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
8 ianor 1009 . . . . 5 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ (¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))))
9 pm2.21 121 . . . . . 6 𝑅 ∈ Ring → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
10 fvex 6450 . . . . . . . . . 10 (Base‘𝑅) ∈ V
11 hashxrcl 13445 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘(Base‘𝑅)) ∈ ℝ*)
1210, 11ax-mp 5 . . . . . . . . 9 (♯‘(Base‘𝑅)) ∈ ℝ*
13 1xr 10423 . . . . . . . . 9 1 ∈ ℝ*
14 xrlenlt 10429 . . . . . . . . 9 (((♯‘(Base‘𝑅)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅))))
1512, 13, 14mp2an 683 . . . . . . . 8 ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅)))
1615bicomi 216 . . . . . . 7 (¬ 1 < (♯‘(Base‘𝑅)) ↔ (♯‘(Base‘𝑅)) ≤ 1)
17 simpr 479 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ≤ 1)
1810a1i 11 . . . . . . . . . . . . 13 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ V)
19 1nn0 11643 . . . . . . . . . . . . . 14 1 ∈ ℕ0
2019a1i 11 . . . . . . . . . . . . 13 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → 1 ∈ ℕ0)
21 hashbnd 13423 . . . . . . . . . . . . 13 (((Base‘𝑅) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
2218, 20, 17, 21syl3anc 1494 . . . . . . . . . . . 12 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
23 hashcl 13444 . . . . . . . . . . . . 13 ((Base‘𝑅) ∈ Fin → (♯‘(Base‘𝑅)) ∈ ℕ0)
24 simpr 479 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ0)
2510a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘(Base‘𝑅)) ∈ ℕ0 → (Base‘𝑅) ∈ V)
26 hasheq0 13451 . . . . . . . . . . . . . . . . . . . . 21 ((Base‘𝑅) ∈ V → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . 20 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2827biimpd 221 . . . . . . . . . . . . . . . . . . 19 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 → (Base‘𝑅) = ∅))
2928necon3d 3020 . . . . . . . . . . . . . . . . . 18 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((Base‘𝑅) ≠ ∅ → (♯‘(Base‘𝑅)) ≠ 0))
3029impcom 398 . . . . . . . . . . . . . . . . 17 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ≠ 0)
31 elnnne0 11641 . . . . . . . . . . . . . . . . 17 ((♯‘(Base‘𝑅)) ∈ ℕ ↔ ((♯‘(Base‘𝑅)) ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≠ 0))
3224, 30, 31sylanbrc 578 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ)
3332ex 403 . . . . . . . . . . . . . . 15 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3433adantr 474 . . . . . . . . . . . . . 14 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3534com12 32 . . . . . . . . . . . . 13 ((♯‘(Base‘𝑅)) ∈ ℕ0 → (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ))
3623, 35syl 17 . . . . . . . . . . . 12 ((Base‘𝑅) ∈ Fin → (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ))
3722, 36mpcom 38 . . . . . . . . . . 11 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ)
38 nnle1eq1 11389 . . . . . . . . . . 11 ((♯‘(Base‘𝑅)) ∈ ℕ → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3937, 38syl 17 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
4017, 39mpbid 224 . . . . . . . . 9 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) = 1)
4140ex 403 . . . . . . . 8 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ≤ 1 → (♯‘(Base‘𝑅)) = 1))
42 ringgrp 18913 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43 eqid 2825 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4443grpbn0 17812 . . . . . . . . 9 (𝑅 ∈ Grp → (Base‘𝑅) ≠ ∅)
4542, 44syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ≠ ∅)
4641, 45syl11 33 . . . . . . 7 ((♯‘(Base‘𝑅)) ≤ 1 → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4716, 46sylbi 209 . . . . . 6 (¬ 1 < (♯‘(Base‘𝑅)) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
489, 47jaoi 888 . . . . 5 ((¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
498, 48sylbi 209 . . . 4 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
5049com12 32 . . 3 (𝑅 ∈ Ring → (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (♯‘(Base‘𝑅)) = 1))
517, 50impbid 204 . 2 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
5243isnzr2hash 19632 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
5352bicomi 216 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ 𝑅 ∈ NzRing)
5453notbii 312 . 2 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ ¬ 𝑅 ∈ NzRing)
5551, 54syl6bb 279 1 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wne 2999  Vcvv 3414  c0 4146   class class class wbr 4875  cfv 6127  Fincfn 8228  0cc0 10259  1c1 10260  *cxr 10397   < clt 10398  cle 10399  cn 11357  0cn0 11625  chash 13417  Basecbs 16229  Grpcgrp 17783  Ringcrg 18908  NzRingcnzr 19625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-n0 11626  df-xnn0 11698  df-z 11712  df-uz 11976  df-fz 12627  df-hash 13418  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-mgp 18851  df-ur 18863  df-ring 18910  df-nzr 19626
This theorem is referenced by:  rng1nnzr  19642  lmod0rng  42729  0ringdif  42731  0ring1eq0  42733  lindszr  43119
  Copyright terms: Public domain W3C validator