MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringnnzr Structured version   Visualization version   GIF version

Theorem 0ringnnzr 20415
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
0ringnnzr (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))

Proof of Theorem 0ringnnzr
StepHypRef Expression
1 1re 11219 . . . . . . . 8 1 ∈ ℝ
21ltnri 11328 . . . . . . 7 ¬ 1 < 1
3 breq2 5153 . . . . . . 7 ((♯‘(Base‘𝑅)) = 1 → (1 < (♯‘(Base‘𝑅)) ↔ 1 < 1))
42, 3mtbiri 326 . . . . . 6 ((♯‘(Base‘𝑅)) = 1 → ¬ 1 < (♯‘(Base‘𝑅)))
54adantl 481 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ 1 < (♯‘(Base‘𝑅)))
65intnand 488 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
76ex 412 . . 3 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
8 ianor 979 . . . . 5 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ (¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))))
9 pm2.21 123 . . . . . 6 𝑅 ∈ Ring → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
10 fvex 6905 . . . . . . . . . 10 (Base‘𝑅) ∈ V
11 hashxrcl 14322 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘(Base‘𝑅)) ∈ ℝ*)
1210, 11ax-mp 5 . . . . . . . . 9 (♯‘(Base‘𝑅)) ∈ ℝ*
13 1xr 11278 . . . . . . . . 9 1 ∈ ℝ*
14 xrlenlt 11284 . . . . . . . . 9 (((♯‘(Base‘𝑅)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅))))
1512, 13, 14mp2an 689 . . . . . . . 8 ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅)))
1615bicomi 223 . . . . . . 7 (¬ 1 < (♯‘(Base‘𝑅)) ↔ (♯‘(Base‘𝑅)) ≤ 1)
17 simpr 484 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ≤ 1)
18 1nn0 12493 . . . . . . . . . . . . 13 1 ∈ ℕ0
19 hashbnd 14301 . . . . . . . . . . . . 13 (((Base‘𝑅) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
2010, 18, 17, 19mp3an12i 1464 . . . . . . . . . . . 12 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
21 hashcl 14321 . . . . . . . . . . . . 13 ((Base‘𝑅) ∈ Fin → (♯‘(Base‘𝑅)) ∈ ℕ0)
22 simpr 484 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ0)
23 hasheq0 14328 . . . . . . . . . . . . . . . . . . . 20 ((Base‘𝑅) ∈ V → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2410, 23mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2524biimpd 228 . . . . . . . . . . . . . . . . . 18 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 → (Base‘𝑅) = ∅))
2625necon3d 2960 . . . . . . . . . . . . . . . . 17 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((Base‘𝑅) ≠ ∅ → (♯‘(Base‘𝑅)) ≠ 0))
2726impcom 407 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ≠ 0)
28 elnnne0 12491 . . . . . . . . . . . . . . . 16 ((♯‘(Base‘𝑅)) ∈ ℕ ↔ ((♯‘(Base‘𝑅)) ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≠ 0))
2922, 27, 28sylanbrc 582 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ)
3029ex 412 . . . . . . . . . . . . . 14 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3130adantr 480 . . . . . . . . . . . . 13 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3221, 31syl5com 31 . . . . . . . . . . . 12 ((Base‘𝑅) ∈ Fin → (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ))
3320, 32mpcom 38 . . . . . . . . . . 11 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ)
34 nnle1eq1 12247 . . . . . . . . . . 11 ((♯‘(Base‘𝑅)) ∈ ℕ → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3533, 34syl 17 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3617, 35mpbid 231 . . . . . . . . 9 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) = 1)
3736ex 412 . . . . . . . 8 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ≤ 1 → (♯‘(Base‘𝑅)) = 1))
38 ringgrp 20133 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
39 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4039grpbn0 18888 . . . . . . . . 9 (𝑅 ∈ Grp → (Base‘𝑅) ≠ ∅)
4138, 40syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ≠ ∅)
4237, 41syl11 33 . . . . . . 7 ((♯‘(Base‘𝑅)) ≤ 1 → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4316, 42sylbi 216 . . . . . 6 (¬ 1 < (♯‘(Base‘𝑅)) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
449, 43jaoi 854 . . . . 5 ((¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
458, 44sylbi 216 . . . 4 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4645com12 32 . . 3 (𝑅 ∈ Ring → (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (♯‘(Base‘𝑅)) = 1))
477, 46impbid 211 . 2 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
4839isnzr2hash 20411 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
4948bicomi 223 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ 𝑅 ∈ NzRing)
5049notbii 319 . 2 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ ¬ 𝑅 ∈ NzRing)
5147, 50bitrdi 286 1 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  Vcvv 3473  c0 4323   class class class wbr 5149  cfv 6544  Fincfn 8942  0cc0 11113  1c1 11114  *cxr 11252   < clt 11253  cle 11254  cn 12217  0cn0 12477  chash 14295  Basecbs 17149  Grpcgrp 18856  Ringcrg 20128  NzRingcnzr 20404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-oadd 8473  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-n0 12478  df-xnn0 12550  df-z 12564  df-uz 12828  df-fz 13490  df-hash 14296  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-nzr 20405
This theorem is referenced by:  0ringdif  20417  0ring1eq0  20423  rng1nnzr  20540  prmidl0  32840  qsdrng  32882  0ringirng  33039  lmod0rng  46910  lindszr  47239
  Copyright terms: Public domain W3C validator