MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ringnnzr Structured version   Visualization version   GIF version

Theorem 0ringnnzr 20414
Description: A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
Assertion
Ref Expression
0ringnnzr (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))

Proof of Theorem 0ringnnzr
StepHypRef Expression
1 1re 11218 . . . . . . . 8 1 ∈ ℝ
21ltnri 11327 . . . . . . 7 ¬ 1 < 1
3 breq2 5151 . . . . . . 7 ((♯‘(Base‘𝑅)) = 1 → (1 < (♯‘(Base‘𝑅)) ↔ 1 < 1))
42, 3mtbiri 326 . . . . . 6 ((♯‘(Base‘𝑅)) = 1 → ¬ 1 < (♯‘(Base‘𝑅)))
54adantl 480 . . . . 5 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ 1 < (♯‘(Base‘𝑅)))
65intnand 487 . . . 4 ((𝑅 ∈ Ring ∧ (♯‘(Base‘𝑅)) = 1) → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
76ex 411 . . 3 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 → ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
8 ianor 978 . . . . 5 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ (¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))))
9 pm2.21 123 . . . . . 6 𝑅 ∈ Ring → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
10 fvex 6903 . . . . . . . . . 10 (Base‘𝑅) ∈ V
11 hashxrcl 14321 . . . . . . . . . 10 ((Base‘𝑅) ∈ V → (♯‘(Base‘𝑅)) ∈ ℝ*)
1210, 11ax-mp 5 . . . . . . . . 9 (♯‘(Base‘𝑅)) ∈ ℝ*
13 1xr 11277 . . . . . . . . 9 1 ∈ ℝ*
14 xrlenlt 11283 . . . . . . . . 9 (((♯‘(Base‘𝑅)) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅))))
1512, 13, 14mp2an 688 . . . . . . . 8 ((♯‘(Base‘𝑅)) ≤ 1 ↔ ¬ 1 < (♯‘(Base‘𝑅)))
1615bicomi 223 . . . . . . 7 (¬ 1 < (♯‘(Base‘𝑅)) ↔ (♯‘(Base‘𝑅)) ≤ 1)
17 simpr 483 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ≤ 1)
18 1nn0 12492 . . . . . . . . . . . . 13 1 ∈ ℕ0
19 hashbnd 14300 . . . . . . . . . . . . 13 (((Base‘𝑅) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
2010, 18, 17, 19mp3an12i 1463 . . . . . . . . . . . 12 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (Base‘𝑅) ∈ Fin)
21 hashcl 14320 . . . . . . . . . . . . 13 ((Base‘𝑅) ∈ Fin → (♯‘(Base‘𝑅)) ∈ ℕ0)
22 simpr 483 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ0)
23 hasheq0 14327 . . . . . . . . . . . . . . . . . . . 20 ((Base‘𝑅) ∈ V → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2410, 23mp1i 13 . . . . . . . . . . . . . . . . . . 19 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 ↔ (Base‘𝑅) = ∅))
2524biimpd 228 . . . . . . . . . . . . . . . . . 18 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((♯‘(Base‘𝑅)) = 0 → (Base‘𝑅) = ∅))
2625necon3d 2959 . . . . . . . . . . . . . . . . 17 ((♯‘(Base‘𝑅)) ∈ ℕ0 → ((Base‘𝑅) ≠ ∅ → (♯‘(Base‘𝑅)) ≠ 0))
2726impcom 406 . . . . . . . . . . . . . . . 16 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ≠ 0)
28 elnnne0 12490 . . . . . . . . . . . . . . . 16 ((♯‘(Base‘𝑅)) ∈ ℕ ↔ ((♯‘(Base‘𝑅)) ∈ ℕ0 ∧ (♯‘(Base‘𝑅)) ≠ 0))
2922, 27, 28sylanbrc 581 . . . . . . . . . . . . . . 15 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ∈ ℕ0) → (♯‘(Base‘𝑅)) ∈ ℕ)
3029ex 411 . . . . . . . . . . . . . 14 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3130adantr 479 . . . . . . . . . . . . 13 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ∈ ℕ0 → (♯‘(Base‘𝑅)) ∈ ℕ))
3221, 31syl5com 31 . . . . . . . . . . . 12 ((Base‘𝑅) ∈ Fin → (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ))
3320, 32mpcom 38 . . . . . . . . . . 11 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) ∈ ℕ)
34 nnle1eq1 12246 . . . . . . . . . . 11 ((♯‘(Base‘𝑅)) ∈ ℕ → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3533, 34syl 17 . . . . . . . . . 10 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → ((♯‘(Base‘𝑅)) ≤ 1 ↔ (♯‘(Base‘𝑅)) = 1))
3617, 35mpbid 231 . . . . . . . . 9 (((Base‘𝑅) ≠ ∅ ∧ (♯‘(Base‘𝑅)) ≤ 1) → (♯‘(Base‘𝑅)) = 1)
3736ex 411 . . . . . . . 8 ((Base‘𝑅) ≠ ∅ → ((♯‘(Base‘𝑅)) ≤ 1 → (♯‘(Base‘𝑅)) = 1))
38 ringgrp 20132 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
39 eqid 2730 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
4039grpbn0 18887 . . . . . . . . 9 (𝑅 ∈ Grp → (Base‘𝑅) ≠ ∅)
4138, 40syl 17 . . . . . . . 8 (𝑅 ∈ Ring → (Base‘𝑅) ≠ ∅)
4237, 41syl11 33 . . . . . . 7 ((♯‘(Base‘𝑅)) ≤ 1 → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4316, 42sylbi 216 . . . . . 6 (¬ 1 < (♯‘(Base‘𝑅)) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
449, 43jaoi 853 . . . . 5 ((¬ 𝑅 ∈ Ring ∨ ¬ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
458, 44sylbi 216 . . . 4 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (𝑅 ∈ Ring → (♯‘(Base‘𝑅)) = 1))
4645com12 32 . . 3 (𝑅 ∈ Ring → (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) → (♯‘(Base‘𝑅)) = 1))
477, 46impbid 211 . 2 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))))
4839isnzr2hash 20410 . . . 4 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
4948bicomi 223 . . 3 ((𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ 𝑅 ∈ NzRing)
5049notbii 319 . 2 (¬ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))) ↔ ¬ 𝑅 ∈ NzRing)
5147, 50bitrdi 286 1 (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843   = wceq 1539  wcel 2104  wne 2938  Vcvv 3472  c0 4321   class class class wbr 5147  cfv 6542  Fincfn 8941  0cc0 11112  1c1 11113  *cxr 11251   < clt 11252  cle 11253  cn 12216  0cn0 12476  chash 14294  Basecbs 17148  Grpcgrp 18855  Ringcrg 20127  NzRingcnzr 20403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13489  df-hash 14295  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-nzr 20404
This theorem is referenced by:  0ringdif  20416  0ring1eq0  20422  rng1nnzr  20539  prmidl0  32843  qsdrng  32885  0ringirng  33042  lmod0rng  46908  lindszr  47237
  Copyright terms: Public domain W3C validator