![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gexcl2 | Structured version Visualization version GIF version |
Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
Ref | Expression |
---|---|
gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
Ref | Expression |
---|---|
gexcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gexcl2.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2733 | . . . . . 6 ⊢ (od‘𝐺) = (od‘𝐺) | |
3 | 1, 2 | odcl2 19355 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
4 | 1, 2 | oddvds2 19356 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
5 | 3 | nnzd 12534 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℤ) |
6 | 1 | grpbn0 18787 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
7 | 6 | 3ad2ant1 1134 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → 𝑋 ≠ ∅) |
8 | hashnncl 14275 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
9 | 8 | 3ad2ant2 1135 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
10 | 7, 9 | mpbird 257 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℕ) |
11 | dvdsle 16200 | . . . . . . 7 ⊢ ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝑋) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))) | |
12 | 5, 10, 11 | syl2anc 585 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))) |
13 | 4, 12 | mpd 15 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)) |
14 | 10 | nnzd 12534 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℤ) |
15 | fznn 13518 | . . . . . 6 ⊢ ((♯‘𝑋) ∈ ℤ → (((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)))) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)))) |
17 | 3, 13, 16 | mpbir2and 712 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) |
18 | 17 | 3expa 1119 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) |
19 | 18 | ralrimiva 3140 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) |
20 | gexcl2.2 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
21 | 1, 20, 2 | gexcl3 19377 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) → 𝐸 ∈ ℕ) |
22 | 19, 21 | syldan 592 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2940 ∀wral 3061 ∅c0 4286 class class class wbr 5109 ‘cfv 6500 (class class class)co 7361 Fincfn 8889 1c1 11060 ≤ cle 11198 ℕcn 12161 ℤcz 12507 ...cfz 13433 ♯chash 14239 ∥ cdvds 16144 Basecbs 17091 Grpcgrp 18756 odcod 19314 gExcgex 19315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-inf2 9585 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-disj 5075 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-oadd 8420 df-omul 8421 df-er 8654 df-ec 8656 df-qs 8660 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-sup 9386 df-inf 9387 df-oi 9454 df-card 9883 df-acn 9886 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-n0 12422 df-z 12508 df-uz 12772 df-rp 12924 df-fz 13434 df-fzo 13577 df-fl 13706 df-mod 13784 df-seq 13916 df-exp 13977 df-fac 14183 df-hash 14240 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-clim 15379 df-sum 15580 df-dvds 16145 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-0g 17331 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-minusg 18760 df-sbg 18761 df-mulg 18881 df-subg 18933 df-eqg 18935 df-od 19318 df-gex 19319 |
This theorem is referenced by: cyggexb 19684 pgpfac1lem3a 19863 pgpfaclem3 19870 |
Copyright terms: Public domain | W3C validator |