| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gexcl2 | Structured version Visualization version GIF version | ||
| Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| Ref | Expression |
|---|---|
| gexcl2.1 | ⊢ 𝑋 = (Base‘𝐺) |
| gexcl2.2 | ⊢ 𝐸 = (gEx‘𝐺) |
| Ref | Expression |
|---|---|
| gexcl2 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl2.1 | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2734 | . . . . . 6 ⊢ (od‘𝐺) = (od‘𝐺) | |
| 3 | 1, 2 | odcl2 19533 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ) |
| 4 | 1, 2 | oddvds2 19534 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋)) |
| 5 | 3 | nnzd 12608 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ ℤ) |
| 6 | 1 | grpbn0 18936 | . . . . . . . . 9 ⊢ (𝐺 ∈ Grp → 𝑋 ≠ ∅) |
| 7 | 6 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → 𝑋 ≠ ∅) |
| 8 | hashnncl 14374 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
| 9 | 8 | 3ad2ant2 1134 | . . . . . . . 8 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
| 10 | 7, 9 | mpbird 257 | . . . . . . 7 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℕ) |
| 11 | dvdsle 16316 | . . . . . . 7 ⊢ ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝑋) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))) | |
| 12 | 5, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))) |
| 13 | 4, 12 | mpd 15 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)) |
| 14 | 10 | nnzd 12608 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (♯‘𝑋) ∈ ℤ) |
| 15 | fznn 13599 | . . . . . 6 ⊢ ((♯‘𝑋) ∈ ℤ → (((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → (((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)))) |
| 17 | 3, 13, 16 | mpbir2and 713 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) |
| 18 | 17 | 3expa 1118 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑥 ∈ 𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) |
| 19 | 18 | ralrimiva 3130 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) |
| 20 | gexcl2.2 | . . 3 ⊢ 𝐸 = (gEx‘𝐺) | |
| 21 | 1, 20, 2 | gexcl3 19555 | . 2 ⊢ ((𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) → 𝐸 ∈ ℕ) |
| 22 | 19, 21 | syldan 591 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 ∅c0 4306 class class class wbr 5117 ‘cfv 6528 (class class class)co 7400 Fincfn 8954 1c1 11123 ≤ cle 11263 ℕcn 12233 ℤcz 12581 ...cfz 13514 ♯chash 14338 ∥ cdvds 16259 Basecbs 17215 Grpcgrp 18903 odcod 19492 gExcgex 19493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-disj 5085 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-oadd 8479 df-omul 8480 df-er 8714 df-ec 8716 df-qs 8720 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-sup 9449 df-inf 9450 df-oi 9517 df-card 9946 df-acn 9949 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-fz 13515 df-fzo 13662 df-fl 13799 df-mod 13877 df-seq 14010 df-exp 14070 df-fac 14282 df-hash 14339 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-clim 15493 df-sum 15692 df-dvds 16260 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-minusg 18907 df-sbg 18908 df-mulg 19038 df-subg 19093 df-eqg 19095 df-od 19496 df-gex 19497 |
| This theorem is referenced by: cyggexb 19867 pgpfac1lem3a 20046 pgpfaclem3 20053 |
| Copyright terms: Public domain | W3C validator |