MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gexcl2 Structured version   Visualization version   GIF version

Theorem gexcl2 19505
Description: The exponent of a finite group is finite. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexcl2.1 𝑋 = (Base‘𝐺)
gexcl2.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gexcl2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ)

Proof of Theorem gexcl2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gexcl2.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 eqid 2724 . . . . . 6 (od‘𝐺) = (od‘𝐺)
31, 2odcl2 19481 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ ℕ)
41, 2oddvds2 19482 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝑋))
53nnzd 12584 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ ℤ)
61grpbn0 18892 . . . . . . . . 9 (𝐺 ∈ Grp → 𝑋 ≠ ∅)
763ad2ant1 1130 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → 𝑋 ≠ ∅)
8 hashnncl 14327 . . . . . . . . 9 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
983ad2ant2 1131 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
107, 9mpbird 257 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → (♯‘𝑋) ∈ ℕ)
11 dvdsle 16256 . . . . . . 7 ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝑋) ∈ ℕ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)))
125, 10, 11syl2anc 583 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋)))
134, 12mpd 15 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))
1410nnzd 12584 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → (♯‘𝑋) ∈ ℤ)
15 fznn 13570 . . . . . 6 ((♯‘𝑋) ∈ ℤ → (((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))))
1614, 15syl 17 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → (((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)) ↔ (((od‘𝐺)‘𝑥) ∈ ℕ ∧ ((od‘𝐺)‘𝑥) ≤ (♯‘𝑋))))
173, 13, 16mpbir2and 710 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)))
18173expa 1115 . . 3 (((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) ∧ 𝑥𝑋) → ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)))
1918ralrimiva 3138 . 2 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → ∀𝑥𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋)))
20 gexcl2.2 . . 3 𝐸 = (gEx‘𝐺)
211, 20, 2gexcl3 19503 . 2 ((𝐺 ∈ Grp ∧ ∀𝑥𝑋 ((od‘𝐺)‘𝑥) ∈ (1...(♯‘𝑋))) → 𝐸 ∈ ℕ)
2219, 21syldan 590 1 ((𝐺 ∈ Grp ∧ 𝑋 ∈ Fin) → 𝐸 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  c0 4315   class class class wbr 5139  cfv 6534  (class class class)co 7402  Fincfn 8936  1c1 11108  cle 11248  cn 12211  cz 12557  ...cfz 13485  chash 14291  cdvds 16200  Basecbs 17149  Grpcgrp 18859  odcod 19440  gExcgex 19441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-disj 5105  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8700  df-ec 8702  df-qs 8706  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-acn 9934  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-n0 12472  df-z 12558  df-uz 12822  df-rp 12976  df-fz 13486  df-fzo 13629  df-fl 13758  df-mod 13836  df-seq 13968  df-exp 14029  df-fac 14235  df-hash 14292  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-clim 15434  df-sum 15635  df-dvds 16201  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-0g 17392  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-grp 18862  df-minusg 18863  df-sbg 18864  df-mulg 18992  df-subg 19046  df-eqg 19048  df-od 19444  df-gex 19445
This theorem is referenced by:  cyggexb  19815  pgpfac1lem3a  19994  pgpfaclem3  20001
  Copyright terms: Public domain W3C validator