MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssub Structured version   Visualization version   GIF version

Theorem pwssub 18205
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwssub.m 𝑀 = (-g𝑅)
pwssub.n = (-g𝑌)
Assertion
Ref Expression
pwssub (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))

Proof of Theorem pwssub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 767 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐼𝑉)
2 pwsgrp.y . . . . . 6 𝑌 = (𝑅s 𝐼)
3 eqid 2819 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
5 simpll 765 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑅 ∈ Grp)
6 simprl 769 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
72, 3, 4, 5, 1, 6pwselbas 16754 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹:𝐼⟶(Base‘𝑅))
87ffvelrnda 6844 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝑅))
9 fvexd 6678 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((invg𝑅)‘(𝐺𝑥)) ∈ V)
107feqmptd 6726 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
11 simprr 771 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺𝐵)
12 eqid 2819 . . . . . . 7 (invg𝑅) = (invg𝑅)
13 eqid 2819 . . . . . . 7 (invg𝑌) = (invg𝑌)
142, 4, 12, 13pwsinvg 18204 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝐺𝐵) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
155, 1, 11, 14syl3anc 1366 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
162, 3, 4, 5, 1, 11pwselbas 16754 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺:𝐼⟶(Base‘𝑅))
1716ffvelrnda 6844 . . . . . 6 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ (Base‘𝑅))
1816feqmptd 6726 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
193, 12grpinvf 18142 . . . . . . . 8 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2019ad2antrr 724 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2120feqmptd 6726 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg𝑅)‘𝑦)))
22 fveq2 6663 . . . . . 6 (𝑦 = (𝐺𝑥) → ((invg𝑅)‘𝑦) = ((invg𝑅)‘(𝐺𝑥)))
2317, 18, 21, 22fmptco 6884 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑅) ∘ 𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
2415, 23eqtrd 2854 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
251, 8, 9, 10, 24offval2 7418 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹f (+g𝑅)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
262pwsgrp 18203 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 ∈ Grp)
274, 13grpinvcl 18143 . . . . 5 ((𝑌 ∈ Grp ∧ 𝐺𝐵) → ((invg𝑌)‘𝐺) ∈ 𝐵)
2826, 11, 27syl2an2r 683 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) ∈ 𝐵)
29 eqid 2819 . . . 4 (+g𝑅) = (+g𝑅)
30 eqid 2819 . . . 4 (+g𝑌) = (+g𝑌)
312, 4, 5, 1, 6, 28, 29, 30pwsplusgval 16755 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝐹f (+g𝑅)((invg𝑌)‘𝐺)))
32 pwssub.m . . . . . 6 𝑀 = (-g𝑅)
333, 29, 12, 32grpsubval 18141 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑅) ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
348, 17, 33syl2anc 586 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
3534mpteq2dva 5152 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
3625, 31, 353eqtr4d 2864 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
37 pwssub.n . . . 4 = (-g𝑌)
384, 30, 13, 37grpsubval 18141 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
3938adantl 484 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
401, 8, 17, 10, 18offval2 7418 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹f 𝑀𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
4136, 39, 403eqtr4d 2864 1 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  Basecbs 16475  +gcplusg 16557  s cpws 16712  Grpcgrp 18095  invgcminusg 18096  -gcsg 18097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100
This theorem is referenced by:  evl1subd  20497  frlmsubgval  20901
  Copyright terms: Public domain W3C validator