Step | Hyp | Ref
| Expression |
1 | | simplr 765 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐼 ∈ 𝑉) |
2 | | pwsgrp.y |
. . . . . 6
⊢ 𝑌 = (𝑅 ↑s 𝐼) |
3 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
4 | | pwsinvg.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑌) |
5 | | simpll 763 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝑅 ∈ Grp) |
6 | | simprl 767 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 ∈ 𝐵) |
7 | 2, 3, 4, 5, 1, 6 | pwselbas 17117 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹:𝐼⟶(Base‘𝑅)) |
8 | 7 | ffvelrnda 6943 |
. . . 4
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ (Base‘𝑅)) |
9 | | fvexd 6771 |
. . . 4
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((invg‘𝑅)‘(𝐺‘𝑥)) ∈ V) |
10 | 7 | feqmptd 6819 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
11 | | simprr 769 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 ∈ 𝐵) |
12 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝑅) = (invg‘𝑅) |
13 | | eqid 2738 |
. . . . . . 7
⊢
(invg‘𝑌) = (invg‘𝑌) |
14 | 2, 4, 12, 13 | pwsinvg 18603 |
. . . . . 6
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) = ((invg‘𝑅) ∘ 𝐺)) |
15 | 5, 1, 11, 14 | syl3anc 1369 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑌)‘𝐺) = ((invg‘𝑅) ∘ 𝐺)) |
16 | 2, 3, 4, 5, 1, 11 | pwselbas 17117 |
. . . . . . 7
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺:𝐼⟶(Base‘𝑅)) |
17 | 16 | ffvelrnda 6943 |
. . . . . 6
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ (Base‘𝑅)) |
18 | 16 | feqmptd 6819 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
19 | 3, 12 | grpinvf 18541 |
. . . . . . . 8
⊢ (𝑅 ∈ Grp →
(invg‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
20 | 19 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (invg‘𝑅):(Base‘𝑅)⟶(Base‘𝑅)) |
21 | 20 | feqmptd 6819 |
. . . . . 6
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (invg‘𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg‘𝑅)‘𝑦))) |
22 | | fveq2 6756 |
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑥) → ((invg‘𝑅)‘𝑦) = ((invg‘𝑅)‘(𝐺‘𝑥))) |
23 | 17, 18, 21, 22 | fmptco 6983 |
. . . . 5
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑅) ∘ 𝐺) = (𝑥 ∈ 𝐼 ↦ ((invg‘𝑅)‘(𝐺‘𝑥)))) |
24 | 15, 23 | eqtrd 2778 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑌)‘𝐺) = (𝑥 ∈ 𝐼 ↦ ((invg‘𝑅)‘(𝐺‘𝑥)))) |
25 | 1, 8, 9, 10, 24 | offval2 7531 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 ∘f
(+g‘𝑅)((invg‘𝑌)‘𝐺)) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥))))) |
26 | 2 | pwsgrp 18602 |
. . . . 5
⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Grp) |
27 | 4, 13 | grpinvcl 18542 |
. . . . 5
⊢ ((𝑌 ∈ Grp ∧ 𝐺 ∈ 𝐵) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
28 | 26, 11, 27 | syl2an2r 681 |
. . . 4
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → ((invg‘𝑌)‘𝐺) ∈ 𝐵) |
29 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑅) = (+g‘𝑅) |
30 | | eqid 2738 |
. . . 4
⊢
(+g‘𝑌) = (+g‘𝑌) |
31 | 2, 4, 5, 1, 6, 28,
29, 30 | pwsplusgval 17118 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)) = (𝐹 ∘f
(+g‘𝑅)((invg‘𝑌)‘𝐺))) |
32 | | pwssub.m |
. . . . . 6
⊢ 𝑀 = (-g‘𝑅) |
33 | 3, 29, 12, 32 | grpsubval 18540 |
. . . . 5
⊢ (((𝐹‘𝑥) ∈ (Base‘𝑅) ∧ (𝐺‘𝑥) ∈ (Base‘𝑅)) → ((𝐹‘𝑥)𝑀(𝐺‘𝑥)) = ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥)))) |
34 | 8, 17, 33 | syl2anc 583 |
. . . 4
⊢ ((((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)𝑀(𝐺‘𝑥)) = ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥)))) |
35 | 34 | mpteq2dva 5170 |
. . 3
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝑀(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘𝑅)((invg‘𝑅)‘(𝐺‘𝑥))))) |
36 | 25, 31, 35 | 3eqtr4d 2788 |
. 2
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺)) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝑀(𝐺‘𝑥)))) |
37 | | pwssub.n |
. . . 4
⊢ − =
(-g‘𝑌) |
38 | 4, 30, 13, 37 | grpsubval 18540 |
. . 3
⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
39 | 38 | adantl 481 |
. 2
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹(+g‘𝑌)((invg‘𝑌)‘𝐺))) |
40 | 1, 8, 17, 10, 18 | offval2 7531 |
. 2
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 ∘f 𝑀𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)𝑀(𝐺‘𝑥)))) |
41 | 36, 39, 40 | 3eqtr4d 2788 |
1
⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹 ∘f 𝑀𝐺)) |