MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssub Structured version   Visualization version   GIF version

Theorem pwssub 18205
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwssub.m 𝑀 = (-g𝑅)
pwssub.n = (-g𝑌)
Assertion
Ref Expression
pwssub (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))

Proof of Theorem pwssub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐼𝑉)
2 pwsgrp.y . . . . . 6 𝑌 = (𝑅s 𝐼)
3 eqid 2798 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
5 simpll 766 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑅 ∈ Grp)
6 simprl 770 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
72, 3, 4, 5, 1, 6pwselbas 16754 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹:𝐼⟶(Base‘𝑅))
87ffvelrnda 6828 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝑅))
9 fvexd 6660 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((invg𝑅)‘(𝐺𝑥)) ∈ V)
107feqmptd 6708 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
11 simprr 772 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺𝐵)
12 eqid 2798 . . . . . . 7 (invg𝑅) = (invg𝑅)
13 eqid 2798 . . . . . . 7 (invg𝑌) = (invg𝑌)
142, 4, 12, 13pwsinvg 18204 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝐺𝐵) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
155, 1, 11, 14syl3anc 1368 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
162, 3, 4, 5, 1, 11pwselbas 16754 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺:𝐼⟶(Base‘𝑅))
1716ffvelrnda 6828 . . . . . 6 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ (Base‘𝑅))
1816feqmptd 6708 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
193, 12grpinvf 18142 . . . . . . . 8 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2019ad2antrr 725 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2120feqmptd 6708 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg𝑅)‘𝑦)))
22 fveq2 6645 . . . . . 6 (𝑦 = (𝐺𝑥) → ((invg𝑅)‘𝑦) = ((invg𝑅)‘(𝐺𝑥)))
2317, 18, 21, 22fmptco 6868 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑅) ∘ 𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
2415, 23eqtrd 2833 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
251, 8, 9, 10, 24offval2 7406 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹f (+g𝑅)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
262pwsgrp 18203 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 ∈ Grp)
274, 13grpinvcl 18143 . . . . 5 ((𝑌 ∈ Grp ∧ 𝐺𝐵) → ((invg𝑌)‘𝐺) ∈ 𝐵)
2826, 11, 27syl2an2r 684 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) ∈ 𝐵)
29 eqid 2798 . . . 4 (+g𝑅) = (+g𝑅)
30 eqid 2798 . . . 4 (+g𝑌) = (+g𝑌)
312, 4, 5, 1, 6, 28, 29, 30pwsplusgval 16755 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝐹f (+g𝑅)((invg𝑌)‘𝐺)))
32 pwssub.m . . . . . 6 𝑀 = (-g𝑅)
333, 29, 12, 32grpsubval 18141 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑅) ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
348, 17, 33syl2anc 587 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
3534mpteq2dva 5125 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
3625, 31, 353eqtr4d 2843 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
37 pwssub.n . . . 4 = (-g𝑌)
384, 30, 13, 37grpsubval 18141 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
3938adantl 485 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
401, 8, 17, 10, 18offval2 7406 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹f 𝑀𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
4136, 39, 403eqtr4d 2843 1 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  cmpt 5110  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  +gcplusg 16557  s cpws 16712  Grpcgrp 18095  invgcminusg 18096  -gcsg 18097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100
This theorem is referenced by:  frlmsubgval  20454  evl1subd  20966
  Copyright terms: Public domain W3C validator