MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssub Structured version   Visualization version   GIF version

Theorem pwssub 19037
Description: Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwssub.m 𝑀 = (-g𝑅)
pwssub.n = (-g𝑌)
Assertion
Ref Expression
pwssub (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))

Proof of Theorem pwssub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐼𝑉)
2 pwsgrp.y . . . . . 6 𝑌 = (𝑅s 𝐼)
3 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
4 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
5 simpll 766 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝑅 ∈ Grp)
6 simprl 770 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹𝐵)
72, 3, 4, 5, 1, 6pwselbas 17503 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹:𝐼⟶(Base‘𝑅))
87ffvelcdmda 7074 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ (Base‘𝑅))
9 fvexd 6891 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((invg𝑅)‘(𝐺𝑥)) ∈ V)
107feqmptd 6947 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
11 simprr 772 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺𝐵)
12 eqid 2735 . . . . . . 7 (invg𝑅) = (invg𝑅)
13 eqid 2735 . . . . . . 7 (invg𝑌) = (invg𝑌)
142, 4, 12, 13pwsinvg 19036 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝐺𝐵) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
155, 1, 11, 14syl3anc 1373 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = ((invg𝑅) ∘ 𝐺))
162, 3, 4, 5, 1, 11pwselbas 17503 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺:𝐼⟶(Base‘𝑅))
1716ffvelcdmda 7074 . . . . . 6 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ (Base‘𝑅))
1816feqmptd 6947 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → 𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
193, 12grpinvf 18969 . . . . . . . 8 (𝑅 ∈ Grp → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2019ad2antrr 726 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅):(Base‘𝑅)⟶(Base‘𝑅))
2120feqmptd 6947 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (invg𝑅) = (𝑦 ∈ (Base‘𝑅) ↦ ((invg𝑅)‘𝑦)))
22 fveq2 6876 . . . . . 6 (𝑦 = (𝐺𝑥) → ((invg𝑅)‘𝑦) = ((invg𝑅)‘(𝐺𝑥)))
2317, 18, 21, 22fmptco 7119 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑅) ∘ 𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
2415, 23eqtrd 2770 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) = (𝑥𝐼 ↦ ((invg𝑅)‘(𝐺𝑥))))
251, 8, 9, 10, 24offval2 7691 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹f (+g𝑅)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
262pwsgrp 19035 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 ∈ Grp)
274, 13grpinvcl 18970 . . . . 5 ((𝑌 ∈ Grp ∧ 𝐺𝐵) → ((invg𝑌)‘𝐺) ∈ 𝐵)
2826, 11, 27syl2an2r 685 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → ((invg𝑌)‘𝐺) ∈ 𝐵)
29 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
30 eqid 2735 . . . 4 (+g𝑌) = (+g𝑌)
312, 4, 5, 1, 6, 28, 29, 30pwsplusgval 17504 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝐹f (+g𝑅)((invg𝑌)‘𝐺)))
32 pwssub.m . . . . . 6 𝑀 = (-g𝑅)
333, 29, 12, 32grpsubval 18968 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑅) ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
348, 17, 33syl2anc 584 . . . 4 ((((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) ∧ 𝑥𝐼) → ((𝐹𝑥)𝑀(𝐺𝑥)) = ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥))))
3534mpteq2dva 5214 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g𝑅)((invg𝑅)‘(𝐺𝑥)))))
3625, 31, 353eqtr4d 2780 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹(+g𝑌)((invg𝑌)‘𝐺)) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
37 pwssub.n . . . 4 = (-g𝑌)
384, 30, 13, 37grpsubval 18968 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
3938adantl 481 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹(+g𝑌)((invg𝑌)‘𝐺)))
401, 8, 17, 10, 18offval2 7691 . 2 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹f 𝑀𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)𝑀(𝐺𝑥))))
4136, 39, 403eqtr4d 2780 1 (((𝑅 ∈ Grp ∧ 𝐼𝑉) ∧ (𝐹𝐵𝐺𝐵)) → (𝐹 𝐺) = (𝐹f 𝑀𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  f cof 7669  Basecbs 17228  +gcplusg 17271  s cpws 17460  Grpcgrp 18916  invgcminusg 18917  -gcsg 18918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921
This theorem is referenced by:  frlmsubgval  21725  evl1subd  22280
  Copyright terms: Public domain W3C validator