![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtresticc | Structured version Visualization version GIF version |
Description: The restriction of the less than order to a closed interval gives the same topology as the subspace topology. (Contributed by Mario Carneiro, 9-Sep-2015.) |
Ref | Expression |
---|---|
ordtresticc | ⊢ ((ordTop‘ ≤ ) ↾t (𝐴[,]𝐵)) = (ordTop‘( ≤ ∩ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13455 | . 2 ⊢ (𝐴[,]𝐵) ⊆ ℝ* | |
2 | iccss2 13443 | . 2 ⊢ ((𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥[,]𝑦) ⊆ (𝐴[,]𝐵)) | |
3 | 1, 2 | ordtrestixx 23214 | 1 ⊢ ((ordTop‘ ≤ ) ↾t (𝐴[,]𝐵)) = (ordTop‘( ≤ ∩ ((𝐴[,]𝐵) × (𝐴[,]𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∩ cin 3945 × cxp 5672 ‘cfv 6546 (class class class)co 7416 ≤ cle 11290 [,]cicc 13375 ↾t crest 17430 ordTopcordt 17509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-pre-lttri 11223 ax-pre-lttrn 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-1o 8488 df-2o 8489 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fi 9447 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-icc 13379 df-rest 17432 df-topgen 17453 df-ordt 17511 df-ps 18586 df-tsr 18587 df-top 22884 df-topon 22901 df-bases 22937 |
This theorem is referenced by: dfii5 24893 iccpnfhmeo 24958 xrhmeo 24959 icccldii 48288 |
Copyright terms: Public domain | W3C validator |