Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitssxrge0 Structured version   Visualization version   GIF version

Theorem unitssxrge0 32811
Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Assertion
Ref Expression
unitssxrge0 (0[,]1) ⊆ (0[,]+∞)

Proof of Theorem unitssxrge0
StepHypRef Expression
1 0e0iccpnf 13423 . 2 0 ∈ (0[,]+∞)
2 1xr 11260 . . 3 1 ∈ ℝ*
3 0le1 11724 . . 3 0 ≤ 1
4 pnfge 13097 . . . 4 (1 ∈ ℝ* → 1 ≤ +∞)
52, 4ax-mp 5 . . 3 1 ≤ +∞
6 0xr 11248 . . . 4 0 ∈ ℝ*
7 pnfxr 11255 . . . 4 +∞ ∈ ℝ*
8 elicc1 13355 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)))
96, 7, 8mp2an 691 . . 3 (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))
102, 3, 5, 9mpbir3an 1342 . 2 1 ∈ (0[,]+∞)
11 iccss2 13382 . 2 ((0 ∈ (0[,]+∞) ∧ 1 ∈ (0[,]+∞)) → (0[,]1) ⊆ (0[,]+∞))
121, 10, 11mp2an 691 1 (0[,]1) ⊆ (0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1088  wcel 2107  wss 3946   class class class wbr 5144  (class class class)co 7396  0cc0 11097  1c1 11098  +∞cpnf 11232  *cxr 11234  cle 11236  [,]cicc 13314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-1st 7962  df-2nd 7963  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-icc 13318
This theorem is referenced by:  probun  33349
  Copyright terms: Public domain W3C validator