![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unitssxrge0 | Structured version Visualization version GIF version |
Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
Ref | Expression |
---|---|
unitssxrge0 | ⊢ (0[,]1) ⊆ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0e0iccpnf 13515 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
2 | 1xr 11345 | . . 3 ⊢ 1 ∈ ℝ* | |
3 | 0le1 11809 | . . 3 ⊢ 0 ≤ 1 | |
4 | pnfge 13189 | . . . 4 ⊢ (1 ∈ ℝ* → 1 ≤ +∞) | |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ 1 ≤ +∞ |
6 | 0xr 11333 | . . . 4 ⊢ 0 ∈ ℝ* | |
7 | pnfxr 11340 | . . . 4 ⊢ +∞ ∈ ℝ* | |
8 | elicc1 13447 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))) | |
9 | 6, 7, 8 | mp2an 691 | . . 3 ⊢ (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)) |
10 | 2, 3, 5, 9 | mpbir3an 1341 | . 2 ⊢ 1 ∈ (0[,]+∞) |
11 | iccss2 13474 | . 2 ⊢ ((0 ∈ (0[,]+∞) ∧ 1 ∈ (0[,]+∞)) → (0[,]1) ⊆ (0[,]+∞)) | |
12 | 1, 10, 11 | mp2an 691 | 1 ⊢ (0[,]1) ⊆ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 ∈ wcel 2103 ⊆ wss 3970 class class class wbr 5169 (class class class)co 7445 0cc0 11180 1c1 11181 +∞cpnf 11317 ℝ*cxr 11319 ≤ cle 11321 [,]cicc 13406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-po 5611 df-so 5612 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-1st 8026 df-2nd 8027 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-icc 13410 |
This theorem is referenced by: probun 34376 |
Copyright terms: Public domain | W3C validator |