| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitssxrge0 | Structured version Visualization version GIF version | ||
| Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| Ref | Expression |
|---|---|
| unitssxrge0 | ⊢ (0[,]1) ⊆ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0e0iccpnf 13480 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 2 | 1xr 11301 | . . 3 ⊢ 1 ∈ ℝ* | |
| 3 | 0le1 11767 | . . 3 ⊢ 0 ≤ 1 | |
| 4 | pnfge 13153 | . . . 4 ⊢ (1 ∈ ℝ* → 1 ≤ +∞) | |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ 1 ≤ +∞ |
| 6 | 0xr 11289 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 7 | pnfxr 11296 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 8 | elicc1 13412 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))) | |
| 9 | 6, 7, 8 | mp2an 692 | . . 3 ⊢ (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)) |
| 10 | 2, 3, 5, 9 | mpbir3an 1341 | . 2 ⊢ 1 ∈ (0[,]+∞) |
| 11 | iccss2 13439 | . 2 ⊢ ((0 ∈ (0[,]+∞) ∧ 1 ∈ (0[,]+∞)) → (0[,]1) ⊆ (0[,]+∞)) | |
| 12 | 1, 10, 11 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3931 class class class wbr 5123 (class class class)co 7412 0cc0 11136 1c1 11137 +∞cpnf 11273 ℝ*cxr 11275 ≤ cle 11277 [,]cicc 13371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7995 df-2nd 7996 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-icc 13375 |
| This theorem is referenced by: probun 34355 |
| Copyright terms: Public domain | W3C validator |