Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitssxrge0 Structured version   Visualization version   GIF version

Theorem unitssxrge0 33898
Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.)
Assertion
Ref Expression
unitssxrge0 (0[,]1) ⊆ (0[,]+∞)

Proof of Theorem unitssxrge0
StepHypRef Expression
1 0e0iccpnf 13433 . 2 0 ∈ (0[,]+∞)
2 1xr 11251 . . 3 1 ∈ ℝ*
3 0le1 11717 . . 3 0 ≤ 1
4 pnfge 13103 . . . 4 (1 ∈ ℝ* → 1 ≤ +∞)
52, 4ax-mp 5 . . 3 1 ≤ +∞
6 0xr 11239 . . . 4 0 ∈ ℝ*
7 pnfxr 11246 . . . 4 +∞ ∈ ℝ*
8 elicc1 13363 . . . 4 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)))
96, 7, 8mp2an 692 . . 3 (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))
102, 3, 5, 9mpbir3an 1342 . 2 1 ∈ (0[,]+∞)
11 iccss2 13391 . 2 ((0 ∈ (0[,]+∞) ∧ 1 ∈ (0[,]+∞)) → (0[,]1) ⊆ (0[,]+∞))
121, 10, 11mp2an 692 1 (0[,]1) ⊆ (0[,]+∞)
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1086  wcel 2109  wss 3922   class class class wbr 5115  (class class class)co 7394  0cc0 11086  1c1 11087  +∞cpnf 11223  *cxr 11225  cle 11227  [,]cicc 13322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-po 5554  df-so 5555  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-icc 13326
This theorem is referenced by:  probun  34418
  Copyright terms: Public domain W3C validator