![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unitssxrge0 | Structured version Visualization version GIF version |
Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
Ref | Expression |
---|---|
unitssxrge0 | ⊢ (0[,]1) ⊆ (0[,]+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0e0iccpnf 13502 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
2 | 1xr 11324 | . . 3 ⊢ 1 ∈ ℝ* | |
3 | 0le1 11790 | . . 3 ⊢ 0 ≤ 1 | |
4 | pnfge 13176 | . . . 4 ⊢ (1 ∈ ℝ* → 1 ≤ +∞) | |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ 1 ≤ +∞ |
6 | 0xr 11312 | . . . 4 ⊢ 0 ∈ ℝ* | |
7 | pnfxr 11319 | . . . 4 ⊢ +∞ ∈ ℝ* | |
8 | elicc1 13434 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))) | |
9 | 6, 7, 8 | mp2an 692 | . . 3 ⊢ (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)) |
10 | 2, 3, 5, 9 | mpbir3an 1341 | . 2 ⊢ 1 ∈ (0[,]+∞) |
11 | iccss2 13461 | . 2 ⊢ ((0 ∈ (0[,]+∞) ∧ 1 ∈ (0[,]+∞)) → (0[,]1) ⊆ (0[,]+∞)) | |
12 | 1, 10, 11 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ (0[,]+∞) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3964 class class class wbr 5149 (class class class)co 7435 0cc0 11159 1c1 11160 +∞cpnf 11296 ℝ*cxr 11298 ≤ cle 11300 [,]cicc 13393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-po 5598 df-so 5599 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-1st 8019 df-2nd 8020 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-icc 13397 |
This theorem is referenced by: probun 34414 |
Copyright terms: Public domain | W3C validator |