| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unitssxrge0 | Structured version Visualization version GIF version | ||
| Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| Ref | Expression |
|---|---|
| unitssxrge0 | ⊢ (0[,]1) ⊆ (0[,]+∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0e0iccpnf 13380 | . 2 ⊢ 0 ∈ (0[,]+∞) | |
| 2 | 1xr 11193 | . . 3 ⊢ 1 ∈ ℝ* | |
| 3 | 0le1 11661 | . . 3 ⊢ 0 ≤ 1 | |
| 4 | pnfge 13050 | . . . 4 ⊢ (1 ∈ ℝ* → 1 ≤ +∞) | |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ 1 ≤ +∞ |
| 6 | 0xr 11181 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 7 | pnfxr 11188 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 8 | elicc1 13310 | . . . 4 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞))) | |
| 9 | 6, 7, 8 | mp2an 692 | . . 3 ⊢ (1 ∈ (0[,]+∞) ↔ (1 ∈ ℝ* ∧ 0 ≤ 1 ∧ 1 ≤ +∞)) |
| 10 | 2, 3, 5, 9 | mpbir3an 1342 | . 2 ⊢ 1 ∈ (0[,]+∞) |
| 11 | iccss2 13338 | . 2 ⊢ ((0 ∈ (0[,]+∞) ∧ 1 ∈ (0[,]+∞)) → (0[,]1) ⊆ (0[,]+∞)) | |
| 12 | 1, 10, 11 | mp2an 692 | 1 ⊢ (0[,]1) ⊆ (0[,]+∞) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 (class class class)co 7353 0cc0 11028 1c1 11029 +∞cpnf 11165 ℝ*cxr 11167 ≤ cle 11169 [,]cicc 13269 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-icc 13273 |
| This theorem is referenced by: probun 34386 |
| Copyright terms: Public domain | W3C validator |